
50 Nose 68 Mains

PILOT'S OPERATING HANDBOOK and FAA APPROVED AIRPLANE FLIGHT MANUAL

CESSNA AIRCRAFT COMPANY

1979 MODEL R182

Serial No. R182011.73

THIS DOCUMENT MUST BE CARRIED IN THE AIRPLANE AT ALL TIMES.

Registration No. <u>N 156KA</u>

THIS HANDBOOK INCLUDES THE MATERIAL REQUIRED TO BE FURNISHED TO THE PILOT BY CAR PART 3 AND CONSTITUTES THE FAA APPROVED AIRPLANE FLIGHT MANUAL.

COPYRIGHT @ 1978

CESSNA AIRCRAFT COMPANY WICHITA, KANSAS, USA

D1142-13PH--RPC--400--9/78

1 OCTOBER 1978

THIS MANUAL WAS PROVIDED FOR THE AIRPLANE IDENTIFIED ON THE TITLE PAGE ON <u>6-8-19</u>. SUBSEQUENT REVISIONS SUPPLIED BY CESSNA AIRCRAFT COMPANY MUST BE PROPERLY IN-SERTED.

Lev Sitte

CESSNA AIRCRAFT COMPANY, PAWNEE DIVISION

CONGRATULATIONS

í

CESSNA MODEL R182

CONGRATULATIONS ...

Welcome to the ranks of Cessna owners! Your Cessna has been designed and constructed to give you the most in performance, economy, and comfort. It is our desire that you will find flying it, either for business or pleasure, a pleasant and profitable experience.

This Pilot's Operating Handbook has been prepared as a guide to help you get the most pleasure and utility from your airplane. It contains information about your Cessna's equipment, operating procedures, and performance; and suggestions for its servicing and care. We urge you to read it from cover to cover, and to refer to it frequently.

Our interest in your flying pleasure has not ceased with your purchase of a Cessna. World-wide, the Cessna Dealer Organization backed by the Cessna Customer Services Department stands ready to serve you. The following services are offered by most Cessna Dealers:

- THE CESSNA WARRANTY, which provides coverage for parts and labor, is available at Cessna Dealers worldwide. Specific benefits and provisions of warranty, plus other important benefits for you, are contained in your Customer Care Program book, supplied with your airplane. Warranty service is available to you at authorized Cessna Dealers throughout the world upon presentation of your Customer Care Card which establishes your eligibility under the warranty.
- FACTORY TRAINED PERSONNEL to provide you with courteous expert service.
- FACTORY APPROVED SERVICE EQUIPMENT to provide you efficient and accurate workmanship.
- A STOCK OF GENUINE CESSNA SERVICE PARTS on hand when you need them.
- THE LATEST AUTHORITATIVE INFORMATION FOR SERVICING CESSNA AIR-PLANES, since Cessna Dealers have all of the Service Manuals and Parts Catalogs, kept current by Service Letters and Service News Letters, published by Cessna Aircraft Company.

We urge all Cessna owners to use the Cessna Dealer Organization to the fullest.

A current Cessna Dealer Directory accompanies your new airplane. The Directory is revised frequently, and a current copy can be obtained from your Cessna Dealer. Make your Directory one of your cross-country flight planning aids; a warm welcome awaits you at every Cessna Dealer.

PERFORMANCE-SPECIFICATIONS

CESSNA MODEL R182

PERFORMANCE - SPECIFICATIONS

SPEED:	•[
Maximum at Sea Level	160 KNOWS
Cruise, 75% Power at 7500 Ft	150 KNOTS
CRUISE: Recommended lean mixture with fuel allowance for)r
engine start, taxi, takeoff, climb and 45 minutes	
reserve at 45% power.	000 NING
75% Power at 7500 Ft	890 NM
86 Gallons Usable Fuel Time	5.8 HRS
88 Gallons Usable Fuel Time Maximum Range at 10,000 Ft Range 88 Gallons Usable Fuel Time RATE OF CLIMB AT SEA LEVEL	1135 NM
88 Gallons Usable Fuel Time	9.0 HRS
CERVEL	, 1140 FPM
SERVICE CEILING	14,300 F1*
TAKEOFF PERFORMANCE:	
Ground Roll	. 820 FT
Total Distance Over 50-Ft Obstacle	. 1570 FT
LANDING PERFORMANCE: Ground Roll	_
Ground Roll	600 FT
Total Distance Over 50-Ft Obstacle	1320 FT
STALL SPEED (CAS):	
Flaps Down, Power Off	54 KNOTS
MAXIMUM WEIGHT:	
	3112 LBS
MAXIMUM WEIGHT: Ramp Takeoff or Landing STANDARD EMPTY WEIGHT:	. 3100 LBS
Skylane RG	1732 LBS
Skylane RG II	1783 LBS
MAXIMUM USEFUL LOAD:	
Skylane RG	1380 LBS
Skylane RG II	1329 LBS
BAGGAGE ALLOWANCE	
WING LOADING: Pounds/Sq Ft	17.8
POWER LOADING: Pounds/HP	13.2
FUEL CAPACITY: Total	. 92 GAL.
OIL CAPACITY	9 QTS
ENGINE: Avco Lycoming	O-540-J3C5D
235 BHP at 2400 RPM	
PROPELLER: Constant Speed, Diameter	82 IN.

*The Service Ceiling is 18,000 ft if an optional EGT indicator is used to set the mixture.

1 October 1978

ł

į

COVERAGE/REVISIONS/ LOG OF EFFECTIVE PAGES

COVERAGE

The Pilot's Operating Handbook in the airplane at the time of delivery from Cessna Aircraft Company contains information applicable to the 1979 Model R182 airplane designated by the serial number and registration number shown on the Title Page of this handbook.

REVISIONS

Changes and/or additions to this handbook will be covered by revisions published by Cessna Aircraft Company. These revisions are distributed to all Cessna Dealers and to owners of U.S. Registered aircraft according to FAA records at the time of revision issuance.

Revisions should be examined immediately upon receipt and incorporated in this handbook.

NOTE

It is the responsibility of the owner to maintain this handbook in a current status when it is being used for operational purposes.

Owners should contact their Cessna Dealer whenever the revision status of their handbook is in question.

A revision bar will extend the full length of new or revised text and/or illustrations added on new or presently existing pages. This bar will be located adjacent to the applicable revised area on the outer margin of the page.

All revised pages will carry the revision number and date on the applicable page.

The following Log of Effective Pages provides the dates of issue for original and revised pages, and a listing of all pages in the handbook. Pages affected by the current revision are indicated by an asterisk (*) preceding the pages listed.

LOG OF EFFECTIVE PAGES

Dates of issue for origina	l and revised	l pages are:
Original 1 C	October 1978	

Page	Date	Page	Date
Title1 G	October 1978	6-11 Octobe	r 1978
Assignment Record1 (6-2 Blank1 Octobe	
i thru iv1 (6-3 thru 6-13 1 Octobe	
1-1 thru 1-9 1 (6-14 Blank	
1-10 Blank		6-15 thru 6-25 1 Octobe	
2-1,		6-26 Blank	
2-2 Blank		7-1 thru 7-44	
2-3 thru 2-11		8-11 Octobe	
2-12 Blank		8-2 Blank	
3-1 thru 3-19		8-3 thru 8-15	
3-20 Blank		8-16 Blank	
4-1 thru 4-111 (9-1 thru 9-31 Octobe	
4-12 Blank1 (9-4 Blank1 Octobe	r 1978
4-13 thru 4-24 1 (
5-1	October 1978	NOTE	
5-2 Blank1 C	October 1978	 Refer to Section 9 Table of Co 	ntents
5-3 thru 5-25 1 (October 1978	for supplements applicable to or	otional
5-26 Blank1 (October 1978	systems.	
		•	

1 October 1978

iii

TABLE OF CONTENTS

SECTION

GENERAL 1
LIMITATIONS 2
EMERGENCY PROCEDURES 3
NORMAL PROCEDURES
PERFORMANCE5
WEIGHT & BALANCE/ EQUIPMENT LIST6
AIRPLANE & SYSTEMS DESCRIPTIONS7
AIRPLANE HANDLING, SERVICE & MAINTENANCE
SUPPLEMENTS (Optional Systems Description & Operating Procedures)9

SECTION 1 GENERAL

SECTION 1 GENERAL

TABLE OF CONTENTS

Page

Three View					•	•	•	•	•	•	•		•							$1 \cdot 2$
Introduction		•									•	•								1-3
Descriptive Data										•	•	•	•			•	•	•	•	1-3
Engine				•	•		•			•	•									1-3
Propeller .															•					1-3
Fuel																				
Oil																				
Maximum Ce																				
Standard Air	pla	ne	We	ig	hts	3														1-5
Cabin And Er																				
Baggage Spa																				
Specific Load																				
Symbols, Abbrev	iat	ioı	ıs A	۱nd	ТĒ	'er	m	in	olo	og	y									1-6
General Airs																				
Meteorologic																				
Engine Powe																				
Airplane Per																				
Weight And H																				

SECTION 1 GENERAL

CESSNA MODEL R182

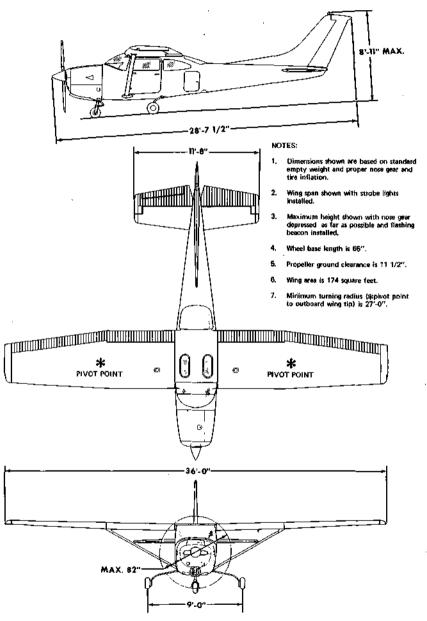


Figure 1-1. Three View

SECTION 1 GENERAL

INTRODUCTION

This handbook contains 9 sections, and includes the material required to be furnished to the pilot by CAR Part 3. It also contains supplemental data supplied by Cessna Aircraft Company.

Section 1 provides basic data and information of general interest. It also contains definitions or explanations of symbols, abbreviations, and terminology commonly used.

DESCRIPTIVE DATA

ENGINE

Number of Engines: 1.

Engine Manufacturer: Avco Lycoming.

Engine Model Number: O-540-J3C5D.

Engine Type: Normally-aspirated, direct-drive, air-cooled, horizontallyopposed, carburetor equipped, six-cylinder engine with 541.5 cu. in. displacement.

Horsepower Rating and Engine Speed: 235 rated BHP at 2400 RPM.

PROPELLER

Propeller Manufacturer: McCauley Accessory Division. Propeller Model Number: B2D34C214/90DHB-8. Number of Blades: 2. Propeller Diameter, Maximum: 82 inches.

Minimum: 80.5 inches.

Propeller Type: Constant speed and hydraulically actuated, with a low pitch setting of 15.8° and a high pitch setting of 29.4° (30 inch station).

FUEL

Approved Fuel Grades (and Colors): 100LL Grade Aviation Fuel (Blue).

100 (Formerly 100/130) Grade Aviation Fuel (Green).

SECTION 1 GENERAL

Total Capacity: 92 gallons. Total Capacity Each Tank: 46 gallons. Total Usable: 88 gallons.

NOTE

To ensure maximum fuel capacity when refueling, and minimize cross-feeding when parked on a sloping surface, place the fuel selector valve in either LEFT or RIGHT position.

OIL

Oil Grade (Specification):

MIL-L-6082 Aviation Grade Straight Mineral Oil: Use to replenish supply during first 25 hours and at the first 25-hour oil change. Continue to use until a total of 50 hours has accumulated or oil consumption has stabilized.

NOTE

The airplane was delivered from the factory with a corrosion preventive aircraft engine oil. This oil should be drained after the first 25 hours of operation.

MIL-L-22851 Ashless Dispersant Oil: This oil must be used after first 50 hours or oil consumption has stabilized.
Recommended Viscosity For Temperature Range:
MIL-L-6082 Aviation Grade Straight Mineral Oil:
SAE 50 above 16°C (60°F).
SAE 40 between -1°C (30°F) and 32°C (90°F).
SAE 30 between -18°C (0°F) and 21°C (70°F).
SAE 20 below -12°C (10°F).
MIL-L-22851 Ashless Dispersant Oil:
SAE 40 or SAE 50 above 16°C (60°F).
SAE 40 between -1°C (30°F) and 32°C (90°F).
SAE 40 or SAE 50 above 16°C (60°F).
SAE 40 between -1°C (30°F) and 32°C (90°F).
SAE 30 or SAE 40 between -18°C (0°F) and 21°C (70°F).
SAE 30 below -12°C (10°F).
Oil Capacity:
Sump: 8 Quarts.

Total: 9 Quarts.

MAXIMUM CERTIFICATED WEIGHTS

Ramp: 3112 lbs.
Takeoff: 3100 lbs.
Landing: 3100 lbs.
Weight in Baggage Compartment: Baggage Area "A" (or passenger on child's seat) - Station 82 to 110: 120 lbs. See note below.
Baggage Area "B" - Station 110 to 134: 80 lbs. See note below.

NOTE

The maximum combined weight capacity for baggage areas A and B is 200 lbs.

STANDARD AIRPLANE WEIGHTS

Standard Empty Weight, Skylane RG: 1732 lbs. Skylane RG II: 1783 lbs. Maximum Useful Load, Skylane RG: 1380 lbs. Skylane RG II: 1329 lbs.

CABIN AND ENTRY DIMENSIONS

Detailed dimensions of the cabin interior and entry door openings are illustrated in Section 6.

BAGGAGE SPACE AND ENTRY DIMENSIONS

Dimensions of the baggage area and baggage door opening are illustrated in detail in Section 6.

SPECIFIC LOADINGS

Wing Loading: 17.8 lbs./sq. ft. Power Loading: 13.2 lbs./hp.

1 October 1978

1-5

SYMBOLS, ABBREVIATIONS AND TERMINOLOGY

GENERAL AIRSPEED TERMINOLOGY AND SYMBOLS

- KCAS **Knots Calibrated Airspeed** is indicated airspeed corrected for position and instrument error and expressed in knots. Knots calibrated airspeed is equal to KTAS in standard atmosphere at sea level.
- KIAS Knots Indicated Airspeed is the speed shown on the airspeed indicator and expressed in knots.
- KTAS Knots True Airspeed is the airspeed expressed in knots relative to undisturbed air which is KCAS corrected for altitude and temperature.
- V_A Manuevering Speed is the maximum speed at which you may use abrupt control travel.
- V_{FE} Maximum Flap Extended Speed is the highest speed permissible with wing flaps in a prescribed extended position.
- V_{LE} Maximum Landing Gear Extended Speed is the maximum speed at which an airplane can be safely flown with the landing gear extended.
- V_{LO} Maximum Landing Gear Operating Speed is the maximum speed at which the landing gear can be safely extended or retracted.
- V_{NO} Maximum Structural Cruising Speed is the speed that should not be exceeded except in smooth air, then only with caution.
- V_{NE} Never Exceed Speed is the speed limit that may not be exceeded at any time.
 - Stalling Speed or the minimum steady flight speed at which the airplane is controllable.
 - Stalling Speed or the minimum steady flight speed at which the airplane is controllable in the landing configuration at the most forward center of gravity.

vs

 v_{s_o}

SECTION 1 GENERAL

V
XBest Angle-of-Climb Speed is the speed which results in
the greatest gain of altitude in a given horizontal distance.

V_Y Best Rate-of-Climb Speed is the speed which results in the greatest gain in altitude in a given time.

METEOROLOGICAL TERMINOLOGY

OAT Outside Air Temperature is the free air static temperature. It is expressed in either degrees Celsius or degrees Fahrenheit.

StandardStandard Temperature is 15°C at sea level pressure alti-
tude and decreases by 2°C for each 1000 feet of altitude.
ture

PressurePressure Altitude is the altitude read from an altimeterAltitudewhen the altimeter's barometric scale has been set to 29.92inches of mercury (1013 mb).

ENGINE POWER TERMINOLOGY

BHP Brake Horsepower is the power developed by the engine.

RPM Revolutions Per Minute is engine speed.

MP Manifold Pressure is a pressure measured in the engine's induction system and is expressed in inches of mercury (Hg).

AIRPLANE PERFORMANCE AND FLIGHT PLANNING TERMINOLOGY

Demon-
stratedDemonstrated Crosswind Velocity is the velocity of the
crosswind component for which adequate control of the
airplane during takeoff and landing was actually demon-
strated during certification tests. The value shown is not
considered to be limiting.

Usable Fuel Usable Fuel is the fuel available for flight planning.

UnusableUnusable Fuel is the quantity of fuel that can not be safelyFuelused in flight.

GPH Gallons Per Hour is the amount of fuel (in gallons) consumed per hour.

ĺ

ſ

- NMPG Nautical Miles Per Gallon is the distance (in nautical miles) which can be expected per gallon of fuel consumed at a specific engine power setting and/or flight configuration.
- g g is acceleration due to gravity.

WEIGHT AND BALANCE TERMINOLOGY

- Reference **Reference Datum** is an imaginary vertical plane from batum which all horizontal distances are measured for balance purposes.
- Station Station is a location along the airplane fuselage given in terms of the distance from the reference datum.
- Arm Arm is the horizontal distance from the reference datum to the center of gravity (C.G.) of an item.
- Moment Moment is the product of the weight of an item multiplied by its arm. (Moment divided by the constant 1000 is used in this handbook to simplify balance calculations by reducing the number of digits.)
- Center of
GravityCenter of Gravity is the point at which an airplane, or
equipment, would balance if suspended. Its distance from
the reference datum is found by dividing the total moment
by the total weight of the airplane.
- C.G. Center of Gravity Arm is the arm obtained by adding the Arm airplane's individual moments and dividing the sum by the total weight.
- C.G. Center of Gravity Limits are the extreme center of gravity Limits locations within which the airplane must be operated at a given weight.
- StandardStandard Empty Weight is the weight of a standard air-
plane, including unusable fuel, full operating fluids and
full engine oil.
- Basic EmptyBasic Empty Weight is the standard empty weight plus the
weight of optional equipment.

Useful Useful Load is the difference between ramp weight and the basic empty weight.

ł

t

SECTION 1 GENERAL

Maximum Ramp Weight	Maximum Ramp Weight is the maximum weight approved for ground maneuver. (It includes the weight of start, taxi and runup fuel.)
Maximum Takeoff Weight	Maximum Takeoff Weight is the maximum weight approved for the start of the takeoff run.
Maximum Landing Weight	Maximum Landing Weight is the maximum weight approved for the landing touchdown.
Tare	Tare is the weight of chocks, blocks, stands, etc. used when

Tare is the weight of chocks, blocks, stands, etc. used when weighing an airplane, and is included in the scale readings. Tare is deducted from the scale reading to obtain the actual (net) airplane weight.

1 October 1978

1-9/(1-10 blank)

SECTION 2 LIMITATIONS

Page

SECTION 2 LIMITATIONS

TABLE OF CONTENTS

Introduction		•	•	٠	•	•					•		2-3
Airspeed Limitations													
Airspeed Indicator Marking	8												2-4
Power Plant Limitations .	•		•		•	•	•						2-5
Power Plant Instrument Max													
Weight Limits													
Center Of Gravity Limits .							•						2-7
Maneuver Limits			•		•								2-7
Flight Load Factor Limits													2-7
Kinds Of Operation Limits													2-8
Fuel Limitations													2-8
Other Limitations	•		•	•	•	•							2-8
Flap Limitations													2-8
Placards													

2-1/(2-2 blank)

SECTION 2 LIMITATIONS

INTRODUCTION

Section 2 includes operating limitations, instrument markings, and basic placards necessary for the safe operation of the airplane, its engine, standard systems and standard equipment. The limitations included in this section and in Section 9 have been approved by the Federal Aviation Administration. Observance of these operating limitations is required by Federal Aviation Regulations.

NOTE

Refer to Section 9 of this Pilot's Operating Handbook for amended operating limitations, operating procedures, performance data and other necessary information for airplanes equipped with specific options.

NOTE

The airspeeds listed in the Airspeed Limitations chart (figure 2-1) and the Airspeed Indicator Markings chart (figure 2-2) are based on Airspeed Calibration data shown in Section 5 with the normal static source, with the exception of the bottom of the green and white arcs on the airspeed indicator. These are based on a power-off airspeed calibration. If the alternate static source is being used, ample margins should be observed to allow for the airspeed calibration variations between the normal and alternate static sources as shown in Section 5.

Your Cessna is certificated under FAA Type Certificate No. 3A13 as Cessna Model No. R182.

SECTION 2 LIMITATIONS

ł

(

Ç

AIRSPEED LIMITATIONS

Airspeed limitations and their operational significance are shown in \mathbb{V}_{2} figure 2-1.

	SPEED	KCAS	KIAS	REMARKS
V _{NE}	Never Exceed Speed	175	182	Do not exceed this speed in any operation.
V _{NO}	Maximum Structural Cruising Speed	155	160	Do not exceed this speed except in smooth air, and then only with caution.
VA	Maneuvering Speed: 3100 Pounds 2550 Pounds 2000 Pounds	111 100 89	112 101 89	Do not make full or abrupt control movements above this speed.
VFE	Maximum Flap Extended Speed To 10 ⁰ Flaps 10 ⁰ - 40 ⁰ Flaps	137 94	140 95	Do not exceed these speeds with the given flap settings.
VLO	Maximum Landing Gear Operating Speed	137	140	Do not extend or retract landing gear above this speed.
VLE	Maximum Landing Gear Extended Speed	137	140	Do not exceed this speed with landing gear extended
ſ	Maximum Window Open Speed	175	182	Do not exceed this speed with windows open.
	Operating Speed Maximum Landing Gear Extended Speed Maximum Window Open	137	140	gear above this speed. Do not exceed this speed w landing gear extended Do not exceed this speed w

Figure 2-1. Airspeed Limitations

AIRSPEED INDICATOR MARKINGS

Airspeed indicator markings and their color code significance are shown in figure 2-2.

7

SECTION 2 LIMITATIONS

MARKING	KIAS VALUE OR RANGE	SIGNIFICANCE
White Arc	37 - 95	Full Flap Operating Range. Lower limit is maximum weight V _{SD} in landing configuration. Upper limit is maximum speed permissible with flaps extended.
Green Arc	42 - 160	Normal Operating Range. Lower limit is maximum weight V_S at most forward C.G. with flaps retracted. Upper limit is maximum structural cruising speed.
Yellow Arc	160 - 182	Operations must be conducted with caution and only in smooth air.
Red Line	182	Maximum speed for all operations.

Figure 2-2. Airspeed Indicator Markings

POWER PLANT LIMITATIONS

Engine Manufacturer: Avco Lycoming. Engine Model Number: O-540-J3C5D. Engine Operating Limits for Takeoff and Continuous Operations: Maximum Power: 235 BHP. Maximum Engine Speed: 2400 RPM. Maximum Cylinder Head Temperature: 500°F (260°C). Maximum Oil Temperature: 245°F (118°C). Oil Pressure, Minimum: 25 psi. Maximum: 100 psi. Fuel Pressure, Minimum: 0.5 psi. Maximum: 8.0 psi. Propeller Manufacturer: McCauley Accessory Division. Propeller Model Number: B2D34C214/90DHB-8 Propeller Diameter, Maximum: 82 inches. Minimum: 80.5 inches.

Propeller Blade Angle at 30 Inch Station, Low: 15.8°. High: 29.4°.

SECTION 2 LIMITATIONS

POWER PLANT INSTRUMENT MARKINGS

Power plant instrument markings and their color code significance are shown in figure 2-3.

	RED LINE	GREEN ARC	YELLOW ARC	RED LINE
INSTRUMENT		NORMAL OPERATING	CAUTION RANGE	MAXIMUM LIMIT
Tachometer		2100 2400 RPM		2400 RPM
Manifold Pressure		15-23 in.Hg		
Oil Temperature		100 ⁰ -245 ⁰ F		245 ⁰ F
Cylinder Head Temperature		200 ⁰ - 500 ⁰ F		500 ⁰ F
Fuel Pressure	0.5 psi	0.5 ~ 8.0 psi		8.0 psi
Oil Pressure	25 psi	60-90 psi		100 psi
Carburetor Air Temperature			-15 ⁰ to 5 ⁰ C	
Suction		4.5 - 5.4 in. Hg		· · ·
Fuel Quantity	E (2 Gal, Unusable Each Tank)			

Figure 2-3. Power Plant Instrument Markings

WEIGHT LIMITS

Maximum Ramp Weight: 3112 lbs. Maximum Takeoff Weight: 3100 lbs. Maximum Landing Weight: 3100 lbs. Maximum Weight in Baggage Compartment: Baggage Area "A" (or passenger on child's seat) - Station 82 to 110:120 lbs. See note below.

Baggage Area "B" - Station 110 to 134: 80 lbs. See note below.

NOTE

The maximum combined weight capacity for baggage areas A and B is 200 lbs.

CENTER OF GRAVITY LIMITS

Center of Gravity Range:

Forward: 33.0 inches aft of datum at 2250 lbs. or less, with straight line variation to 35.5 inches aft of datum at 2700 lbs., with straight line variation to 40.9 inches aft of datum at 3100 lbs.

Aft: 47.0 inches aft of datum at all weights.

Moment Change Due To Retracting Landing Gear: +3052 lb.-ins. Reference Datum: Front face of firewall.

MANEUVER LIMITS

This airplane is certificated in the normal category. The normal category is applicable to aircraft intended for non-aerobatic operations. These include any maneuvers incidental to normal flying, stalls (except whip stalls), lazy eights, chandelles, and steep turns in which the angle of bank is not more than 60°.

Aerobatic maneuvers, including spins, are not approved.

FLIGHT LOAD FACTOR LIMITS

Flight Load Factors:

*Flaps Up: +3.8g, -1.52g

*Flaps Down: +2.0g

*The design load factors are 150% of the above, and in all cases, the structure meets or exceeds design loads.

40

ſ

KINDS OF OPERATION LIMITS

The airplane is equipped for day VFR and may be equipped for night VFR and/or IFR operations. FAR Part 91 establishes the minimum required instrumentation and equipment for these operations. The reference to types of flight operations on the operating limitations placard reflects equipment installed at the time of Airworthiness Certificate issuance.

Flight into known icing conditions is prohibited.

FUEL LIMITATIONS

2 Standard Tanks: 46 U.S. gallons each. Total Fuel: 92 U.S. gallons. Usable Fuel (all flight conditions): 88 U.S. gallons. Unusable Fuel: 4 U.S. gallons

NOTE

To ensure maximum fuel capacity when refueling, and minimize cross-feeding when parked on a sloping surface, place the fuel selector valve in either LEFT or RIGHT position.

Takeoff and land with the fuel selector valve handle in the BOTH position.

Operation on either left or right tank is limited to level flight only.

With 1/4 tank or less, prolonged uncoordinated flight is prohibited when operating on either left or right tank in level flight.

Approved Fuel Grades (and Colors):

100LL Grade Aviation Fuel (Blue).

100 (Formerly 100/130) Grade Aviation Fuel (Green).

OTHER LIMITATIONS

FLAP LIMITATIONS

Approved Takeoff Range: 0° to 20°. Approved Landing Range: 0° to 40°.

SECTION 2 LIMITATIONS

PLACARDS

The following information must be displayed in the form of composite or individual placards.

1. In full view of the pilot: (The "DAY-NIGHT-VFR-IFR" entry, shown on the example below, will vary as the airplane is equipped.)

The markings and placards installed in this airplane contain operating limitations which must be complied with when operating this airplane in the Normal Category. Other operating limitations which must be complied with when operating this airplane in this category are contained in the Pilot's Operating Handbook and FAA Approved Airplane Flight Manual.

No acrobatic maneuvers, including spins, approved.

Flight into known icing conditions prohibited.

This airplane is certified for the following flight operations as of date of original airworthiness certificate:

DAY-NIGHT-VFR-IFR

2. Near airspeed indicator:

MAX SPEED	-	K	1/	AS
MANEUVER			•	112
GEAR OPER	٠	•		140
GEAR DOWN			٠	140

3. On control lock:

CONTROL LOCK - REMOVE BEFORE STARTING ENGINE.

1 October 1978

2-9

SECTION 2 LIMITATIONS

CESSNA MODEL R182

4. On the fuel selector valve:

OFF LEFT - 44 GAL. LEVEL FLIGHT ONLY BOTH - 88 GAL. ALL FLIGHT ATTITUDES BOTH ON FOR TAKEOFF AND LANDING RIGHT - 44 GAL. LEVEL FLIGHT ONLY

5. On the baggage door:

120 POUNDS MAXIMUM BAGGAGE AND/OR AUXILIARY PASSENGER FORWARD OF BAGGAGE DOOR LATCH AND 80 POUNDS MAXIMUM BAGGAGE AFT OF BAGGAGE DOOR LATCH MAXIMUM 200 POUNDS COMBINED FOR ADDITIONAL LOADING INSTRUCTIONS SEE WEIGHT AND BALANCE DATA

6. On flap position indicator:

0° to 10°	(Partial flap range with blue color code and 140 kt callout; also, me-
10° to 40°	chanical detent at 10°.) (White color code and 95 kt callout; also, mechanical detent at 10° and 20°.)

7. Forward of fuel tank filler cap:

FUEL

100LL/100 MIN GRADE AVIATION GASOLINE CAP. 46.0 U.S. GAL. CAP. 34.5 U.S. GAL. TO BOTTOM OF FILLER NECK

ł

SECTION 2 LIMITATIONS

8. Near gear hand pump:

MANUAL GEAR EXTENSION 1. SELECT GEAR DOWN 2. PULL HANDLE FWD 3. PUMP VERTICALLY CAUTION DO NOT PUMP WITH GEAR UP SELECTED

- 9. A calibration card is provided to indicate the accuracy of the magnetic compass in 30° increments.
- 10. On oil filler cap:

OIL 8 QTS

2-11/(2-12 blank)

ſ

SECTION 3 EMERGENCY PROCEDURES

SECTION 3 EMERGENCY PROCEDURES

TABLE OF CONTENTS

Introduction		•			•				3-3
Airspeeds For Emergency Operation	•	•	•	•					3-3

OPERATIONAL CHECKLISTS

Engine Failures	3-3
Engine Failure During Takeoff Run	3-3
Engine Failure Immediately After Takeoff	3-4
Engine Failure During Flight	
Forced Landings	
Emergency Landing Without Engine Power	
Precautionary Landing With Engine Power	
Ditching	
Fires	
During Start On Ground	
Engine Fire In Flight	3-6
Electrical Fire In Flight	3-6
Cabin Fire	
Wing Fire	
Icing	3-7
Inadvertent Icing Encounter	
Static Source Blockage (Erroneous Instrument Reading	
Suspected)	3-8
Landing Gear Malfunction Procedures	3-8
Landing Gear Fails To Retract	3-8
Landing Gear Fails To Extend	3-8
Gear Up Landing \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	
Landing Without Positive Indication Of Gear Locking	
Landing With A Defective Nose Gear (Or Flat Nose Tire)	
Landing With A Flat Main Tire	
	3-10
Ammeter Shows Excessive Rate of Charge	•
	3-10
Low-Voltage Light Illuminates During Flight	
	3-10

1 October 1978

Page

SECTION 3 EMERGENCY PROCEDURES

TABLE OF CONTENTS (Continued)

Page

AMPLIFIED PROCEDURES

Engine Failure			•		•	•			3-11
Forced Landings									3-12
Landing Without Elevator Control									3-12
Fires									3-12
Emergency Operation In Clouds (Vacuum System	m	Fa	ilt	ire)				3-13 (
Executing A 180° Turn In Clouds	•		•	•	•	•	•		3-13
Emergency Descent Through Clouds							•		3-13
Recovery From A Spiral Dive	•		•	•		•	•		3-14
Inadvertent Flight Into Icing Conditions									3-14
Static Source Blocked									3-14
Spins				•	٠	•	•	•	3-15
Rough Engine Operation Or Loss Of Power	•		•				•		3-16
Carburetor Icing	•		•	•	٠	•	•	•	3-16 (
Spark Plug Fouling									3-16
Magneto Malfunction									3-16
Engine-Driven Fuel Pump Failure			•	•	٠	•	٠	•	3-16
Low Oil Pressure									3-16
Landing Gear Malfunction Procedures									3-17
Retraction Malfunctions									3-17
Extension Malfunctions									3-17
Gear Up Landing									3-18
Electrical Power Supply System Malfunctions .									3-18
Excessive Rate Of Charge	•		•	•	٠	•	٠	•	3-18 (
Insufficient Rate Of Charge			•	٠	•	•	•	•	3-19 \

ĺ

t

INTRODUCTION

Section 3 provides checklist and amplified procedures for coping with emergencies that may occur. Emergencies caused by airplane or engine malfunctions are extremely rare if proper preflight inspections and maintenance are practiced. Enroute weather emergencies can be minimized or eliminated by careful flight planning and good judgment when unexpected weather is encountered. However, should an emergency arise, the basic guidelines described in this section should be considered and applied as necessary to correct the problem. Emergency procedures associated with ELT and other optional systems can be found in Section 9.

AIRSPEEDS FOR EMERGENCY OPERATION

Engine Failure After Takeoff:																				
Wing Flag	ps	υ	P							٠									,	70 KIAS
Wing Flag	ps	D	ov	٧n																65 KIAS
Maneuvering Speed:																				
3100 Lbs		•						•												112 KIAS
2550 Lbs	•		•									•		•						101 KIAS
																				89 KIAS
Maximum Gl	id	e:																		
3100 Lbs																	,		•	80 KIAS
																				72KIAS
																				64 KIAS
Precautionary																				
Landing With										-										
																				$75 \mathrm{KIAS}$
Wing Flap	ps	D	٥v	vn		•	•	•		•	•	•	•	•		٠	•	•	•	65 KIAS

OPERATIONAL CHECKLISTS

ENGINE FAILURES

ENGINE FAILURE DURING TAKEOFF RUN

- 1. Throttle -- IDLE.
- 2. Brakes -- APPLY.
- 3. Wing Flaps -- RETRACT.
- 4. Mixture -- IDLE CUT-OFF.
- 5. Ignition Switch -- OFF.
- 6. Master Switch -- OFF.

ENGINE FAILURE IMMEDIATELY AFTER TAKEOFF

- 1. Airspeed -- 70 KIAS (flaps UP).
 - 65 KIAS (flaps DOWN).
- 2. Mixture -- IDLE CUT-OFF.
- 3. Fuel Selector Valve -- OFF.
- 4. Ignition Switch -- OFF.
- 5. Wing Flaps -- AS REQUIRED (40° recommended).
- 6. Master Switch -- OFF.

ENGINE FAILURE DURING FLIGHT

- 1. Airspeed -- 80 KIAS.
- 2. Carburetor Heat -- ON.
- 3. Fuel Selector Valve -- BOTH
- 4. Mixture -- RICH.
- 5. Ignition Switch -- BOTH (or START if propeller is stopped).
- 6. Primer -- IN and LOCKED.

FORCED LANDINGS

EMERGENCY LANDING WITHOUT ENGINE POWER

1. Airspeed -- 70 KIAS (flaps UP).

65 KIAS (flaps DOWN).

- 2. Mixture -- IDLE CUT-OFF.
- 3. Fuel Selector Valve -- OFF.
- 4. Ignition Switch -- OFF.
- 5. Landing Gear -- DOWN (UP if terrain is rough or soft).
- 6. Wing Flaps -- AS REQUIRED (40° recommended).
- 7. Doors -- UNLATCH PRIOR TO TOUCHDOWN.
- 8. Master Switch -- OFF when landing is assured.
- 9. Touchdown -- SLIGHTLY TAIL LOW.
- 10. Brakes -- APPLY HEAVILY.

PRECAUTIONARY LANDING WITH ENGINE POWER

- 1. Airspeed -- 65 KIAS.
- 2. Wing Flaps -- 20°.
- 3. Selected Field -- FLY OVER, noting terrain and obstructions, then retract flaps upon reaching a safe altitude and airspeed.
- 4. Electrical Switches -- OFF.
- 5. Landing Gear -- DOWN (UP if terrain is rough or soft).
- 6. Wing Flaps -- 40° (on final approach).
- 7. Airspeed -- 65 KIAS.

1 October 1978

A.

SECTION 3 EMERGENCY PROCEDURES

- 8. Doors -- UNLATCH PRIOR TO TOUCHDOWN.
- 9. Avionics Power and Master Switches -- OFF.
- 10. Touchdown -- SLIGHTLY TAIL LOW.
- 11. Ignition Switch -- OFF.
- 12. Brakes -- APPLY HEAVILY.

DITCHING

ţ

í

- 1. **Radio -- TRANSMIT MAYDAY on 121.5 MHz**, giving location and intentions and SQUAWK 7700 if transponder is installed.
- 2. Heavy Objects (in baggage area) -- SECURE OR JETTISON.
- 3. Landing Gear -- UP.
- 4. Flaps -- 20° 40°.
- 5. Power -- ESTABLISH 300 FT/MIN DESCENT at 60 KIAS.
- 6. Approach -- High Winds, Heavy Seas -- INTO THE WIND. Light Winds, Heavy Swells -- PARALLEL TO SWELLS.

NOTE

If no power is available, approach at 70 KIAS with flaps up or at 65 KIAS with 10° flaps.

- 7. Cabin Doors -- UNLATCH.
- 8. Touchdown -- LEVEL ATTITUDE AT ESTABLISHED DESCENT.
- 9. Face -- CUSHION at touchdown with folded coat.
- 10. Airplane -- EVACUATE through cabin doors. If necessary, open windows and flood cabin to equalize pressure so doors can be opened.
- 11. Life Vests and Raft -- INFLATE.

FIRES

DURING START ON GROUND

1. Cranking -- CONTINUE, to get a start which would suck the flames and accumulated fuel through the carburetor and into the engine.

If engine starts:

- 2. Power -- 1700 RPM for a few minutes.
- 3. Engine -- SHUTDOWN and inspect for damage.

If engine fails to start:

4. Throttle -- FULL OPEN.

SECTION 3 EMERGENCY PROCEDURES

- 5. Mixture -- IDLE CUT-OFF.
- 6. Cranking -- CONTINUE.
- 7. Fire Extinguisher -- OBTAIN (have ground attendants obtain if not installed).
- 8. Engine -- SECURE.
 - a. Master Switch -- OFF.
 - b. Ignition Switch -- OFF.
 - c. Fuel Selector Valve -- OFF.
- 9. Fire -- EXTINGUISH using fire extinguisher, wool blanket, or dirt.
- 10. Fire Damage -- INSPECT, repair damage or replace damaged (components or wiring before conducting another flight.

ENGINE FIRE IN FLIGHT

- 1. Mixture -- IDLE CUT-OFF.
- 2. Fuel Selector Valve -- OFF.
- 3. Master Switch -- OFF.
- 4. Cabin Heat and Air -- OFF (except overhead vents).
- 5. Airspeed -- 100 KIAS (If fire is not extinguished, increase glide speed to find an airspeed which will provide an incombustible mixture).
- 6. Forced Landing -- EXECUTE (as described in Emergency Landing Without Engine Power).

ELECTRICAL FIRE IN FLIGHT

- 1. Master Switch -- OFF.
- 2. Avionics Power Switch -- OFF.
- 3. All Other Switches (except ignition switch) -- OFF.
- 4. Vents/Cabin Air/Heat -- CLOSED.
- 5. Fire Extinguisher -- ACTIVATE (if available).

WARNING

After discharging an extinguisher within a closed cabin, ventilate the cabin.

If fire appears out and electrical power is necessary for continuance of flight:

- 6. Master Switch -- ON.
- 7. Circuit Breakers -- CHECK for faulty circuit, do not reset.
- 8. Radio Switches -- OFF.
- 9. Avionics Power Switch -- ON.
- 10. Radio/Electrical Switches -- ON one at a time, with delay after each until short circuit is localized.

11. Vents/Cabin Air/Heat -- OPEN when it is ascertained that fire is completely extinguished.

CABIN FIRE

ſ

Ľ

Ĺ

- 1. Master Switch -- OFF.
- 2. Vents/Cabin Air/Heat -- CLOSED (to avoid drafts).
- 3. Fire Extinguisher -- ACTIVATE (if available).

WARNING

After discharging an extinguisher within a closed cabin, ventilate the cabin.

4. Land the airplane as soon as possible to inspect for damage.

WING FIRE

- 1. Navigation Light Switch -- OFF.
- 2. Strobe Light Switch (if installed) -- OFF.
- 3. Pitot Heat Switch (if installed) -- OFF.

NOTE

Perform a sideslip to keep the flames away from the fuel tank and cabin, and land as soon as possible using flaps only as required for final approach and touchdown.

ICING

INADVERTENT ICING ENCOUNTER

- 1. Turn pitot heat switch ON (if installed).
- 2. Turn back or change altitude to obtain an outside air temperature that is less conducive to icing.
- 3. Pull cabin heat control full out and rotate defroster control clockwise to obtain maximum defroster airflow.
- 4. Increase engine speed to minimize ice build-up on propeller blades.
- 5. Watch for signs of carburetor air filter ice and apply carburetor heat as required. An unexplained loss in manifold pressure could be caused by carburetor ice or air intake filter ice. Lean the mixture if carburetor heat is used continuously.

SECTION 3 EMERGENCY PROCEDURES

- 6. Plan a landing at the nearest airport. With an extremely rapid ice build-up, select a suitable "off airport" landing site.
- 7. With an ice accumulation of 1/4 inch or more on the wing leading edges, be prepared for significantly higher stall speed.
- 8. Leave wing flaps retracted. With a severe ice build-up on the horizontal tail, the change in wing wake airflow direction caused by wing flap extension could result in a loss of elevator effective-ness.
- 9. Open the window and, if practical, scrape ice from a portion of the windshield for visibility in the landing approach.
- 10. Perform a landing approach using a forward slip, if necessary, for improved visibility.
- 11. Approach at 85 to 95 KIAS, depending upon the amount of ice accumulation.
- 12. Perform a landing in level attitude.

STATIC SOURCE BLOCKAGE (Erroneous Instrument Reading Suspected)

- 1. Alternate Static Source Valve (if installed) -- PULL ON.
- 2. Airspeed -- Consult appropriate table in Section 5.
- 3. Altitude -- Cruise 50 feet higher and approach 30 feet higher than normal.

LANDING GEAR MALFUNCTION PROCEDURES

LANDING GEAR FAILS TO RETRACT

- 1. Master Switch -- ON.
- 2. Landing Gear Lever -- CHECK (lever full up).
- 3. Landing Gear and Gear Pump Circuit Breakers -- IN.
- 4. Gear Up Light -- CHECK.
- 5. Landing Gear Lever -- RECYCLE.
- 6. Gear Motor -- CHECK operation (ammeter and noise).

LANDING GEAR FAILS TO EXTEND

- 1. Landing Gear Lever -- DOWN.
- 2. Emergency Hand Pump -- EXTEND HANDLE, and PUMP (perpendicular to handle until resistance becomes heavy -- about 20 cycles).
- 3. Gear Down Light -- ON.
- 4. Pump Handle -- STOW.

GEAR UP LANDING

- 1. Landing Gear Lever -- UP.
- 2. Landing Gear and Gear Pump Circuit Breakers -- IN.
- Runway -- SELECT longest hard surface or smooth sod runway available.
- 4. Wing Flaps -- 40° (on final approach).
- 5. Airspeed -- 65 KIAS.
- 6. Doors -- UNLATCH PRIOR TO TOUCHDOWN.
- 7. Avionics Power and Master Switches -- OFF when landing is assured.
- 8. Touchdown -- SLIGHTLY TAIL LOW.
- 9. Mixture -- IDLE CUT-OFF.
- 10. Ignition Switch -- OFF.
- 11. Fuel Selector Valve -- OFF.
- 12. Airplane -- EVACUATE.

LANDING WITHOUT POSITIVE INDICATION OF GEAR LOCKING

- 1. Before Landing Check -- COMPLETE.
- 2. Approach -- NORMAL (full flap).
- 3. Landing Gear and Gear Pump Circuit Breakers -- IN.
- 4. Landing -- TAIL LOW as smoothly as possible.
- 5. Braking -- MINIMUM necessary.
- 6. Taxi -- SLOWLY.
- 7. Engine -- SHUTDOWN before inspecting gear.

LANDING WITH A DEFECTIVE NOSE GEAR (Or Flat Nose Tire)

- 1. Movable Load -- TRANSFER to baggage area.
- 2. Passenger -- MOVE to rear seat.
- 3. Before Landing Checklist -- COMPLETE.
- 4. Runway -- HARD SURFACE or SMOOTH SOD.
- 5. Wing Flaps -- 40°
- 6. Cabin Doors -- UNLATCH PRIOR TO TOUCHDOWN.
- 7. Avionics Power and Master Switches -- OFF when landing is assured.
- 8. Land -- SLIGHTLY TAIL LOW.
- 9. Mixture -- IDLE CUT-OFF.
- 10. Ignition Switch -- OFF.
- 11. Fuel Selector Valve -- OFF.
- 12. Elevator Control -- HOLD NOSE OFF GROUND as long as possible.
- 13. Airplane -- EVACUATE as soon as it stops.

LANDING WITH A FLAT MAIN TIRE

- 1. Approach -- NORMAL (full flap).
- 2. Touchdown -- GOOD TIRE FIRST, hold airplane off flat tire as long as possible with aileron control.
- 3. Directional Control -- MAINTAIN using brake on good wheel as required.

ELECTRICAL POWER SUPPLY SYSTEM MALFUNCTIONS

AMMETER SHOWS EXCESSIVE RATE OF CHARGE (Full Scale Deflection)

- 1. Alternator -- OFF.
- 2. Nonessential Electrical Equipment -- OFF.
- 3. Flight -- TERMINATE as soon as practical.

LOW-VOLTAGE LIGHT ILLUMINATES DURING FLIGHT (Ammeter Indicates Discharge)

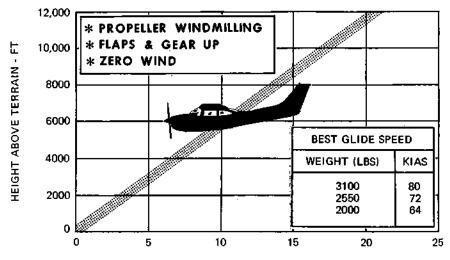
NOTE

Illumination of the low-voltage light may occur during low RPM conditions with an electrical load on the system such as during a low RPM taxi. Under these conditions, the light will go out at higher RPM. The master switch need not be recycled since an over-voltage condition has not occurred to de-activate the alternator system.

- 1. Avionics Power Switch -- OFF.
- 2. Master Switch -- OFF (both sides).
- 3. Master Switch -- ON.
- 4. Low-Voltage Light -- CHECK OFF.
- 5. Avionics Power Switch -- ON.

If low-voltage light illuminates again:

- 6. Alternator -- OFF.
- 7. Nonessential Radio and Electrical Equipment -- OFF.
- 8. Flight -- TERMINATE as soon as practical.


AMPLIFIED PROCEDURES

ENGINE FAILURE

If an engine failure occurs during the takeoff run, the most important thing to do is stop the airplane on the remaining runway. Those extra items on the checklist will provide added safety after a failure of this type.

Prompt lowering of the nose to maintain airspeed and establish a glide attitude is the first response to an engine failure after takeoff. In most cases, the landing should be planned straight ahead with only small changes in direction to avoid obstructions. Altitude and airspeed are seldom sufficient to execute a 180° gliding turn necessary to return to the runway. The checklist procedures assume that adequate time exists to secure the fuel and ignition systems prior to touchdown.

After an engine failure in flight, the best glide speed as shown in figure 3-1 should be established as quickly as possible. While gliding toward a suitable landing area, an effort should be made to identify the cause of the failure. If time permits, an engine restart should be attempted as shown in the checklist. If the engine cannot be restarted, a forced landing without power must be completed.

GROUND DISTANCE - NAUTICAL MILES

Figure 3-1. Maximum Glide

3-11

CESSNA MODEL R182

FORCED LANDINGS

If all attempts to restart the engine fail and a forced landing is imminent, select a suitable field and prepare for the landing as discussed in the checklist for Emergency Landing Without Engine Power.

Before attempting an "off airport" landing with engine power available, one should fly over the landing area at a safe but low altitude to inspect the terrain for obstructions and surface conditions, proceeding as discussed under the Precautionary Landing With Engine Power checklist.

Prepare for ditching by securing or jettisoning heavy objects located in the baggage area and collect folded coats for protection of occupants' face at touchdown. Transmit Mayday message on 121.5 MHz giving location and intentions and squawk 7700 if a transponder is installed. Avoid a landing flare because of difficulty in judging height over a water surface.

In a forced landing situation, do not turn off the avionics power and master switches until a landing is assured. Premature deactivation of the switches will disable the encoding altimeter and airplane electrical systems.

LANDING WITHOUT ELEVATOR CONTROL

Trim for horizontal flight with an airspeed of approximately 80 KIAS by using throttle and elevator trim control. Then do not change the elevator trim control setting; control the glide angle by adjusting power exclusively.

At flareout, the nose-down moment resulting from power reduction is an adverse factor and the airplane may hit on the nose wheel. Consequently, at flareout, the elevator trim control should be adjusted toward the full nose-up position and the power adjusted so that the airplane will rotate to the horizontal attitude for touchdown. Close the throttle at touchdown.

FIRES

Although engine fires are extremely rare in flight, the steps of the appropriate checklist should be followed if one is encountered. After completion of this procedure, execute a forced landing. Do not attempt to restart the engine.

The initial indication of an electrical fire is usually the odor of burning insulation. The checklist for this problem should result in elimination of the fire.

· - · · · ·

3-12

Ĺ

EMERGENCY OPERATION IN CLOUDS

(Vacuum System Failure)

In the event of a vacuum system failure during flight, the directional indicator and attitude indicator will be disabled, and the pilot will have to rely on the turn coordinator if he inadvertently flies into clouds. The following instructions assume that only the electrically-powered turn coordinator is operative, and that the pilot is not completely proficient in instrument flying.

EXECUTING A 180° TURN IN CLOUDS

Upon inadvertently entering the clouds, an immediate plan should be made to turn back as follows:

- 1. Note the compass heading.
- 2. Note the time of the minute hand and observe the position of the sweep second hand on the clock.
- 3. When the sweep second hand indicates the nearest half-minute, initiate a standard rate left turn, holding the turn coordinator symbolic airplane wing opposite the lower left index mark for 60 seconds. Then roll back to level flight by leveling the miniature airplane.
- 4. Check accuracy of the turn by observing the compass heading which should be the reciprocal of the original heading.
- 5. If necessary, adjust heading primarily with skidding motions rather than rolling motions so that the compass will read more accurately.
- 6. Maintain altitude and airspeed by cautious application of elevator control. Avoid overcontrolling by keeping the hands off the control wheel as much as possible and steering only with rudder.

EMERGENCY DESCENT THROUGH CLOUDS

If conditions preclude reestablishment of VFR flight by a 180° turn, a descent through a cloud deck to VFR conditions may be appropriate. If possible, obtain radio clearance for an emergency descent through clouds. To guard against a spiral dive, choose an easterly or westerly heading to minimize compass card swings due to changing bank angles. In addition, keep hands off the control wheel and steer a straight course with rudder control by monitoring the turn coordinator. Occasionally check the compass heading and make minor corrections to hold an approximate course. Before descending into the clouds, set up a stabilized let-down condition as follows:

1. Extend landing gear.

1 October 1978

f

- 2. Apply full rich mixture.
- 3. Apply full carburetor heat.
- 4. Reduce power to set up a 500 to 800 ft/min rate of descent.
- 5. Adjust the elevator and rudder trim control wheels for a stabilized descent at 80 KIAS.
- 6. Keep hands off control wheel.
- 7. Monitor turn coordinator and make corrections by rudder alone.
- 8. Adjust rudder trim to relieve unbalanced rudder force, if present.
- 9. Check trend of compass card movement and make cautious corrections with rudder to stop turn.
- 10. Upon breaking out of clouds, resume normal cruising flight.

RECOVERY FROM A SPIRAL DIVE

If a spiral is encountered, proceed as follows:

- 1. Close the throttle.
- 2. Stop the turn by using coordinated aileron and rudder control to align the symbolic airplane in the turn coordinator with the horizon reference line.
- 3. Cautiously apply elevator back pressure to slowly reduce the indicated airspeed to 80 KIAS.
- 4. Adjust the elevator trim control to maintain an 80 KIAS glide.
- 5. Keep hands off the control wheel, using rudder control to hold a straight heading. Use rudder trim to relieve unbalanced rudder force, if present.
- 6. Apply carburetor heat.
- 7. Clear engine occasionally, but avoid using enough power to disturb the trimmed glide.
- 8. Upon breaking out of clouds, resume normal cruising flight.

INADVERTENT FLIGHT INTO ICING CONDITIONS

Flight into icing conditions is prohibited. An inadvertent encounter with these conditions can best be handled using the checklist procedures. The best procedure, of course, is to turn back or change altitude to escape icing conditions.

STATIC SOURCE BLOCKED

If erroneous readings of the static source instruments (airspeed, altimeter and rate-of-climb) are suspected, the alternate static source valve should be pulled on, thereby supplying static pressure to these instruments from the cabin. Cabin pressures will vary with open ventilators or windows and with airspeed. To avoid the possibility of large errors, the windows should not be open when using the alternate static source.

NOTE

In an emergency on airplanes not equipped with an alternate static source, cabin pressure can be supplied to the static pressure instruments by breaking the glass in the face of the rate-of-climb indicator.

A calibration table is provided in Section 5 to illustrate the effect of the alternate static source on indicated airspeeds. With the windows and vents closed the airspeed indicator may typically read as much as 3 knots faster and the altimeter 50 feet higher in cruise. With the vents open, this variation reduces to zero. If the alternate static source must be used for landing, the normal indicated approach speed may be used since the indicated airspeed variations in this configuration are 2 knots or less.

SPINS

Intentional spins are prohibited in this airplane. Should an inadvertent spin occur, the following recovery procedure should be used:

- 1. RETARD THROTTLE TO IDLE POSITION.
- 2. PLACE AILERONS IN NEUTRAL POSITION.
- 3. APPLY AND HOLD FULL RUDDER OPPOSITE TO THE DIREC-TION OF ROTATION.
- 4. JUST AFTER THE RUDDER REACHES THE STOP, MOVE THE WHEEL BRISKLY FORWARD FAR ENOUGH TO BREAK THE STALL. Full down elevator may be required at aft center of gravity loadings to assure optimum recoveries.
- 5. HOLD THESE CONTROL INPUTS UNTIL ROTATION STOPS Premature relaxation of the control inputs may extend the recovery.
- 6. AS ROTATION STOPS, NEUTRALIZE RUDDER, AND MAKE A SMOOTH RECOVERY FROM THE RESULTING DIVE.

NOTE

If disorientation precludes a visual determination of the direction of rotation, the symbolic airplane in the turn coordinator may be referred to for this information.

1 October 1978

ROUGH ENGINE OPERATION OR LOSS OF POWER

CARBURETOR ICING

An unexplained drop in manifold pressure and eventual engine roughness may result from the formation of carburetor ice. To clear the ice, apply full throttle and pull the carburetor heat knob full out until the engine runs smoothly; then remove carburetor heat and readjust the throttle. If conditions require the continued use of carburetor heat in cruise flight, use the minimum amount of heat necessary to prevent ice from forming and lean the mixture for smoothest engine operation.

SPARK PLUG FOULING

A slight engine roughness in flight may be caused by one or more spark plugs becoming fouled by carbon or lead deposits. This may be verified by turning the ignition switch momentarily from BOTH to either L or R position. An obvious power loss in single ignition operation is evidence of spark plug or magneto trouble. Assuming that spark plugs are the more likely cause, lean the mixture to the recommended lean setting for cruising flight. If the problem does not clear up in several minutes, determine if a richer mixture setting will produce smoother operation. If not, proceed to the nearest airport for repairs using the BOTH position of the ignition switch unless extreme roughness dictates the use of a single ignition position.

MAGNETO MALFUNCTION

A sudden engine roughness or misfiring is usually evidence of magneto problems. Switching from BOTH to either L or R ignition switch position will identify which magneto is malfunctioning. Select different power settings and enrichen the mixture to determine if continued operation on BOTH magnetos is practicable. If not, switch to the good magneto and proceed to the nearest airport for repairs.

ENGINE - DRIVEN FUEL PUMP FAILURE

In the event of an engine-driven fuel pump failure, gravity flow will provide sufficient fuel flow for level or descending flight. However, in a climbing attitude or anytime the fuel pressure drops to 0.5 PSI, the auxiliary fuel pump should be turned on.

LOW OIL PRESSURE

If low oil pressure is accompanied by normal oil temperature, there is a possibility the oil pressure gage or relief valve is malfunctioning. A leak

Ĺ.

CESSNA MODEL R182

SECTION 3 EMERGENCY PROCEDURES

in the line to the gage is not necessarily cause for an immediate precautionary landing because an orifice in this line will prevent a sudden loss of oil from the engine sump. However, a landing at the nearest airport would be advisable to inspect the source of trouble.

If a total loss of oil pressure is accompanied by a rise in oil temperature, there is good reason to suspect an engine failure is imminent. Reduce engine power immediately and select a suitable forced landing field. Use only the minimum power required to reach the desired touchdown spot.

LANDING GEAR MALFUNCTION PROCEDURES

In the event of possible landing gear retraction or extension malfunctions, there are several general checks that should be made prior to initiating the steps outlined in the following paragraphs.

In analyzing a landing gear malfunction, first check that the master switch is ON and the LDG GEAR and GEAR PUMP circuit breakers are in; reset, if necessary. Also, check both landing gear position indicator lights for operation by "pressing-to-test" the light units and rotating them at the same time to check for open dimming shutters. A burned-out bulb can be replaced in flight by using the bulb from the remaining gear position indicator light.

RETRACTION MALFUNCTIONS

If the landing gear fails to retract normally, or an intermittent GEAR UP indicator light is present, check the indicator light for proper operation and attempt to recycle the landing gear. Place the landing gear lever in the GEAR DOWN position. When the GEAR DOWN light illuminates, reposition the gear lever in the GEAR UP position for another retraction attempt. If the GEAR UP indicator light still fails to illuminate, the flight may be continued to an airport having maintenance facilities, if practical. If gear motor operation is audible after a period of one minute following gear lever retraction actuation, pull the GEAR PUMP circuit breaker switch to prevent the electric motor from overheating. In this event, remember to reengage the circuit breaker switch just prior to landing. Intermittent gear motor operation may also be detected by momentary fluctuations of the ammeter needle.

EXTENSION MALFUNCTIONS

Normal landing gear extension time is approximately 5 seconds. If the landing gear will not extend normally, perform the general checks of circuit breakers and master switch and repeat the normal extension

1 October 1978

procedures at a reduced airspeed of 100 KIAS. The landing gear lever must be in the down position with the detent engaged. If efforts to extend and lock the gear through the normal landing gear system fail, the gear can be manually extended (as long as hydraulic system fluid has not been completely lost) by use of the emergency hand pump. The hand pump is located between the front seats.

A checklist is provided for step-by-step instructions for a manual gear extension.

If gear motor operation is audible after a period of one minute following gear lever extension actuation, pull the GEAR PUMP circuit breaker to prevent the electric motor from overheating. In this event, remember to re-engage the circuit breaker just prior to landing.

GEAR UP LANDINGS

If the landing gear remains retracted or is only partially extended, and all efforts to fully extend it (including manual extension) have failed, plan a wheels-up landing. In preparation for landing, reposition the landing gear lever to GEAR UP and push the LDG GEAR and GEAR PUMP circuit breakers in to allow the landing gear to swing into the gear wells at touchdown. Then proceed in accordance with the checklist.

ELECTRICAL POWER SUPPLY SYSTEM MALFUNCTIONS

Malfunctions in the electrical power supply system can be detected by periodic monitoring of the ammeter and low-voltage warning light; however, the cause of these malfunctions is usually difficult to determine. A broken alternator drive belt or wiring is most likely the cause of alternator failures, although other factors could cause the problem. A damaged or improperly adjusted alternator control unit can also cause malfunctions. Problems of this nature constitute an electrical emergency and should be dealt with immediately. Electrical power malfunctions usually fall into two categories: excessive rate of charge and insufficient rate of charge. The paragraphs below describe the recommended remedy for each situation.

EXCESSIVE RATE OF CHARGE

After engine starting and heavy electrical usage at low engine speeds (such as extended taxiing) the battery condition will be low enough to accept above normal charging during the initial part of a flight. However, after thirty minutes of cruising flight, the ammeter should be indicating less than two needle widths of charging current. If the charging rate were to remain above this value on a long flight, the battery would overheat and evaporate the electrolyte at an excessive rate.

Electronic components in the electrical system can be adversely affected by higher than normal voltage. The alternator control unit includes an over-voltage sensor which normally will automatically shut down the alternator if the charge voltage reaches approximately 31.5 volts. If the over-voltage sensor malfunctions or is improperly adjusted, as evidenced by an excessive rate of charge shown on the ammeter, the alternator should be turned off, nonessential electrical equipment turned off and the flight terminated as soon as practical.

INSUFFICIENT RATE OF CHARGE

NOTE

Illumination of the low-voltage light and ammeter discharge indications may occur during low RPM conditions with an electrical load on the system, such as during a low RPM taxi. Under these conditions, the light will go out at higher RPM. The master switch need not be recycled since an over-voltage condition has not occurred to de-activate the alternator system.

If the over-voltage sensor should shut down the alternator, a discharge rate will be shown on the ammeter followed by illumination of the lowvoltage warning light. Since this may be a "puisance" trip-out, an attempt should be made to reactivate the alternator system. To do this, turn the avionics power switch off, then turn both sides of the master switch off and then on again. If the problem no longer exists, normal alternator charging will resume and the low-voltage light will go off. The avionics power switch may then be turned back on. If the light illuminates again, a malfunction is confirmed. In this event, the flight should be terminated and/or the current drain on the battery minimized because the battery can supply the electrical system for only a limited period of time. If the emergency occurs at night, power must be conserved for later use of the landing lights and flaps during landing.

3-19/(3-20 blank)

(

(

SECTION 4 NORMAL PROCEDURES

SECTION 4 NORMAL PROCEDURES

TABLE OF CONTENTS

· · ·	Page
Introduction	
Speeds For Normal Operation	. 4-3
CHECKLIST PROCEDURES	
Preflight Inspection	
Cabin	. 4-5
Right Wing, Trailing Edge	. 4-5
Right Wing	. 4-5
Nose	. 4-6
Left Wing	. 4-6
Left Wing, Leading Edge	. 4-6
Left Wing, Trailing Edge	
Before Starting Engine	
Starting Engine	
Before Takeoff	
Takeoff	
Normal Takeoff	
Short Field Takeoff	
Enroute Climb	
Normal Climb	4-9
Maximum Performance Climb	4-9
Cruise	
Descent	
Before Landing	
Landing	4-10
Normal Landing	
Short Field Landing	
Balked Landing	
After Landing	
Securing Airplane	

4-1

CESSNA MODEL R182

Page

(

ſ

į.

TABLE OF CONTENTS (Continued)

AMPLIFIED PROCEDURES

Starting Engine							•	•	•	•				•				•		•	•			4-13
Taxiing																								4-13
Before Takeoff .								•	•	•	•	•	•											4-15
Warm-Up .																								4-15
Magneto Che	ck																							4-15
Alternator Cl	100	k																						4-15
Takeoff																						÷		4-15
Power Check																								4-15
Wing Flap Se	tti	ng	s																					4-16
Crosswind Ta	ıke	of	f																					4-16
Landing Gear	r R	et	ra	cti	or	่า						•						Ì						4-16
Enroute Climb .			•																					4-17
Cruise																								4-17
																								1 10
Leaning With	. A	. U	es	\mathbf{sn}	a	ĿС	ю	IUI	шv	/ N	112	<u>ւ</u> եւ	11.6	3 L	пu	uс	20	OL.	1.2	JUT	TT			4-19
Leaning With Stalls																								
Stalls	•		•		٠		٠		•	٠		•	•	•		,	•		•	·	•	.•		
Stalls	:	:	•	•	:	•	:	•	•	•	•	•	•	:	•	:	•	•	•	•	•		•	4-20 4-20
Stalls Before Landing Landing	• • •		• •	•	•		• •	•	•	•		•	• • •	• • •		•	•		•	•	•	.• •	• •	4-20 4-20 4-20
Stalls Before Landing Landing Normal Land	ing		• • •		• • •	• • •			•	• • •	• • •	•		• • •			• • •		•	• • •	•		• • •	4-20 4-20 4-20 4-20
Stalls Before Landing Landing Normal Land Short Field L	ing an	g din	ng						•	• • •	• • • •	•	• • •	• • •		,	• • • •		• • • •	• • • •	•		• • •	4-20 4-20 4-20 4-20 4-20
Stalls Before Landing Landing Normal Land Short Field L Crosswind La	ing an	g din lin	· · · · ·		• • • •	• • • •		• • • •	•	• • • •	• • • •	•	• • • •	• • • •		, , , ,	• • • •		• • • • • •	• • • •	•		• • • •	4-20 4-20 4-20 4-20 4-20 4-20 4-21
Stalls Before Landing Landing Normal Land Short Field L Crosswind La Balked Landi	ing an ind ng	din Iin	· · · · · · ·		• • • • •	· · · ·	• • • • •		• • • • •	• • • •	• • • •	•	• • • •	• • • •		, , , ,	•	· · · ·	• • • • • • • •	• • • •	•		• • • • • •	4-20 4-20 4-20 4-20 4-20 4-21 4-21
Stalls Before Landing Landing Normal Land Short Field L Crosswind La Balked Landi Cold Weather Ope	ing an inc ng	g din lin	· · · · · · · · ·	•	• • • • •	· · · ·	· · · ·	• • • • • • • • •	• • • • •	• • • •	• • • • •	•	• • • •	• • • •		• • • •	• • • • •	· · · ·	• • • • • •	• • • •	•		• • • • • • •	4-20 4-20 4-20 4-20 4-20 4-21 4-21 4-21
Stalls Before Landing Landing Normal Land Short Field L Crosswind La Balked Landi Cold Weather Op Starting .	ing an Ind ng	din lin tio	· · · · · · · · · · · · ·		• • • • • • •	· · · ·	· · · · ·	•••••••••••••••••••••••••••••••••••••••	• • • • • •	• • • • •	• • • • •	•	• • • • •	• • • • • • • •	• • • • • • •	· · · · · · · · ·	• • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • •	• • • • • • • •		• • • • •	4-20 4-20 4-20 4-20 4-20 4-21 4-21 4-21 4-21
Stalls Before Landing Landing Normal Land Short Field L Crosswind La Balked Landi Cold Weather Op Starting . Operation	ing an und ng era	g din lin tio	· · · · · · · · · · · · · · · · · · ·	· · · · · · ·	• • • • • • • •	• • • • • • • •	• • • • • • •	• • • • • • • •	· · · ·	• • • • • • • •	• • • • • • • •	• • • • • •	• • • • • • •	• • • • • • • • • • • •	· · · · · · · · · · ·	•	• • • • • • • • •	· · · · · · · · · · ·		• • • • • • • • •	•		• • • • • • • •	4-20 4-20 4-20 4-20 4-21 4-21 4-21 4-21 4-21 4-21 4-23
Stalls Before Landing Landing Normal Land Short Field L Crosswind La Balked Landi Cold Weather Op Starting .	ing an inc era	din din tio	· · · · · · · · · · · · · · · · · · ·		• • • • • • • •		• • • • • • • • •	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			• • • • • • • •	• • • • • • • •	• • • • • • • • •	· · · · · · · · · ·	· · · · · · · ·					• • • • • • •			4-20 4-20 4-20 4-20 4-20 4-21 4-21 4-21 4-21

....

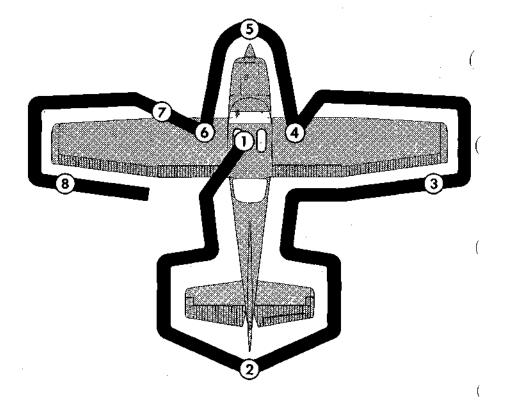
1

í

١

INTRODUCTION

Section 4 provides checklist and amplified procedures for the conduct of normal operation. Normal procedures associated with optional systems can be found in Section 9.


SPEEDS FOR NORMAL OPERATION

Unless otherwise noted, the following speeds are based on a maximum weight of 3100 pounds and may be used for any lesser weight. However, to achieve the performance specified in Section 5 for takeoff distance, the speed appropriate to the particular weight must be used.

Takeoff:

Normal Climb Out
Short Field Takeoff, Flaps 20°, Speed at 50 Feet 55 KIAS
Enroute Climb, Flaps and Gear Up:
Normal
Best Rate of Climb, Sea Level
Best Rate of Climb, 10,000 Feet
Best Angle of Climb, Sea Level
Best Angle of Climb, 10,000 Feet
Landing Approach:
Normal Approach, Flaps Up
Normal Approach, Flaps 40°
Short Field Approach, Flaps 40° 63 KIAS
Balked Landing:
Maximum Power, Flaps 20°
Maximum Recommended Turbulent Air Penetration Speed:
3100 Lbs
<u>2550 Lbs</u>
2000 Lbs
Maximum Demonstrated Crosswind Velocity:
Takeoff or Landing

4-3

NOTE

Visually check airplane for general condition during walk-around inspection. In cold weather, remove even small accumulations of frost, ice or snow from wing, tail and control surfaces. Also, make sure that control surfaces contain no internal accumulations of ice or debris. Prior to flight, check that pitot heater (if installed) is warm to touch within 30 seconds with battery and pitot heat switches on. If a night flight is planned, check operation of all lights, and make sure a flashlight is available.

Figure 4-1. Preflight Inspection

CHECKLIST PROCEDURES

PREFLIGHT INSPECTION

ł

- 1. Pilot's Operating Handbook -- AVAILABLE IN THE AIRPLANE.
- 2. Landing Gear Lever -- DOWN.
- 3. Control Wheel Lock -- REMOVE.
- 4. Ignition Switch -- OFF.
- 5. Avionics Power Switch -- OFF.
- 6. Master Switch -- ON.

WARNING

When turning on the master switch, using an external power source, or pulling the propeller through by hand, treat the propeller as if the ignition switch were on. Do not stand, nor allow anyone else to stand, within the arc of the propeller, since a loose or broken wire, or a component malfunction, could cause the propeller to rotate.

- 7. Fuel Quantity Indicators -- CHECK QUANTITY.
- 8. Landing Gear Position Indicator Light (green) -- ILLUMINATED.
- 9. Master Switch -- OFF.
- 10. Fuel Selector Valve -- BOTH.
- 11. Static Pressure Alternate Source Valve (if installed) -- OFF.
- 12. Baggage Door -- CHECK for security, lock with key if child's seat is to be occupied.

(2) EMPENNAGE

- 1. Rudder Gust Lock -- REMOVE.
- 2. Tail Tie-Down -- DISCONNECT.
- 3. Control Surfaces -- CHECK freedom of movement and security.

(3) RIGHT WING Trailing Edge

1. Aileron -- CHECK freedom of movement and security.

(4) RIGHT WING

- 1. Wing Tie-Down -- DISCONNECT.
- 2. Fuel Tank Vent Opening -- CHECK for stoppage.

1 October 1978

4-5

CESSNA MODEL R182

- 3. Main Wheel Tire -- CHECK for proper inflation.
- 4. Before first flight of the day and after each refueling, use sampler cup and drain small quantity of fuel from fuel tank sump quickdrain valve to check for water, sediment, and proper fuel grade.
- 5. Fuel Quantity -- CHECK VISUALLY for desired level.
- 6. Fuel Filler Cap -- SECURE and vent unobstructed.

5NOSE

- 1. Static Source Openings (both sides of fuselage) --CHECK for stoppage.
- Propeller and Spinner -- CHECK for nicks, security and oil leaks.
- 3. Landing Lights -- CHECK for condition and cleanliness.
- 4. Carburetor Air Inlet -- CHECK for restrictions.
- 5. Nose Wheel Strut and Tire -- CHECK for proper inflation.
- 6. Nose Tie-Down -- DISCONNECT.
- Engine Oil Level -- CHECK. Do not operate with less than five (quarts. Fill to eight quarts for extended flight.
- 8. Before first flight of the day and after each refueling, pull out strainer drain knob for about four seconds to clear fuel strainer of possible water and sediment. Check strainer drain closed. If water is observed, the fuel system may contain additional water, and further draining of the system at the strainer, fuel tank sumps, and fuel selector valve drain plug will be necessary.

6 LEFT WING

- 1. Main Wheel Tire -- CHECK for proper inflation.
- 2. Before first flight of day and after each refueling, use sampler cup and drain small quantity of fuel from fuel tank sump quick-drain valve to check for water, sediment and proper fuel grade.
- 3. Fuel Quantity -- CHECK VISUALLY for desired level.
- 4. Fuel Filler Cap -- SECURE and vent unobstructed.

(7)LEFT WING Leading Edge

- 1. Pitot Tube Cover -- REMOVE and check opening for stoppage.
- 2. Fuel Tank Vent Opening -- CHECK for stoppage.
- 3. Stall Warning Vane -- CHECK for freedom of movement while master switch is momentarily turned ON (horn should sound when vane is pushed upward).
- 4. Wing Tie-Down -- DISCONNECT.

(8) LEFT WING Trailing Edge

1. Aileron -- CHECK freedom of movement and security.

CESSNA MODEL R182

SECTION 4 NORMAL PROCEDURES

BEFORE STARTING ENGINE

- 1. Preflight Inspection -- COMPLETE.
- 2. Seats, Belts, Shoulder Harnesses -- ADJUST and LOCK.
- 3. Fuel Selector Valve -- BOTH.
- Avionics Power Switch, Autopilot (if installed), Electrical Equipment -- OFF.

CAUTION

The avionics power switch must be OFF during engine start to prevent possible damage to avionics.

- 5. Brakes -- TEST and SET.
- 6. Cowl Flaps -- OPEN (move lever out of locking hole to reposition).
- 7. Landing Gear Lever -- DOWN
- 8. Circuit Breakers -- CHECK IN.

STARTING ENGINE

- 1. Mixture -- RICH.
- 2. Propeller -- HIGH RPM.
- 3. Carburetor Heat -- COLD.
- Throttle -- PUMP once, or as much as six times if engine is very hot; leave open 1/4 inch.
- 5. Master Switch -- ON.
- 6. Propeller Area -- CLEAR.
- 7. Ignition Switch -- START (release when engine starts).
- 8. Oil Pressure -- CHECK.

BEFORE TAKEOFF

- 1. Cabin Doors and Windows -- CLOSED and LOCKED.
- 2. Parking Brake -- SET.
- 3. Flight Controls -- FREE and CORRECT.
- 4. Flight Instruments -- SET.
- 5. Fuel Selector Valve -- BOTH.
- 6. Mixture -- RICH.
- 7. Auxilary Fuel Pump -- ON (check for rise in fuel pressure), then OFF.

NOTE

In flight, gravity feed will normally supply satisfactory fuel flow if the engine-driven fuel pump should fail. However, if a fuel pump failure causes the fuel pressure to drop below 0.5 PSI, use the auxiliary fuel pump to assure proper engine operation.

- 8. Elevator and Rudder Trim -- TAKEOFF.
- 9. Throttle -- 1700 RPM.
 - a. Magnetos -- CHECK (RPM drop should not exceed 175 RPM on either magneto or 50 RPM differential between magnetos).
 - Propeller -- CYCLE from high to low RPM; return to high RPM (full in).
 - c. Carburetor Heat -- CHECK (for RPM drop).
 - d. Engine Instruments and Ammeter -- CHECK.
 - e. Suction Gage -- CHECK.
- 10. Avionics Power Switch -- ON.
- 11. Radios -- SET.
- 12. Autopilot (if installed) -- OFF.
- 13. Flashing Beacon, Navigation Lights and/or Strobe Lights -- ON as required.
- 14. Throttle Friction Lock -- ADJUST.
- 15. Parking Brake -- RELEASE.

TAKEOFF

NORMAL TAKEOFF

- 1. Wing Flaps -- 0° 20°.
- 2. Carburetor Heat -- COLD.
- 3. Power -- FULL THROTTLE and 2400 RPM.
- 4. Elevator Control -- LIFT NOSE WHEEL at 50 KIAS.

NOTE

When the nose wheel is lifted, the gear motor may run 1-2 seconds to restore hydraulic pressure.

5. Climb Speed -- 70 KIAS (flaps 20°).

80 KIAS (flaps UP).

- 6. Brakes -- APPLY momentarily when airborne.
- 7. Landing Gear -- RETRACT in climb out.
- 8. Wing Flaps -- RETRACT.

SHORT FIELD TAKEOFF

- 1. Wing Flaps -- 20°.
- 2. Carburetor Heat -- COLD.
- 3. Brakes -- APPLY.
- 4. Power -- FULL THROTTLE and 2400 RPM.
- 5. Brakes -- RELEASE.
- 6. Elevator Control -- MAINTAIN SLIGHTLY TAIL-LOW ATTI-TUDE.
- 7. Climb Speed -- 55 KIAS until all obstacles are cleared.
- 8. Landing Gear -- RETRACT after obstacles are cleared.
- 9. Wing Flaps -- RETRACT slowly after reaching 75 KIAS.

ENROUTE CLIMB

NORMAL CLIMB

- 1. Airspeed -- 90-100 KIAS.
- 2. Power -- 23 INCHES Hg and 2400 RPM.
- 3. Fuel Selector Valve -- BOTH.
- 4. Mixture -- FULL RICH (mixture may be leaned above 3000 feet).
- 5. Cowl Flaps -- OPEN as required.

MAXIMUM PERFORMANCE CLIMB

- 1. Airspeed -- 88 KIAS at sea level to 74 KIAS at 10,000 feet.
- 2. Power -- FULL THROTTLE and 2400 RPM.
- 3. Fuel Selector Valve -- BOTH.
- 4. Mixture -- FULL RICH (mixture may be leaned above 3000 feet).
- 5. Cowl Flaps -- FULL OPEN.

CRUISE

- 1. Power -- 15-23 INCHES Hg, 2100-2400 RPM (no more than 75% power).
- 2. Elevator and Rudder Trim -- ADJUST.
- 3. Mixture -- LEAN.
- 4. Cowl Flaps -- CLOSED.

DESCENT

- 1. Power -- AS DESIRED.
- 2. Carburetor Heat -- AS REQUIRED to prevent carburetor icing.
- 3. Mixture -- ENRICHEN as required.

1 October 1978

CESSNA MODEL R182

ĺ

- 4. Cowl Flaps -- CLOSED.
- Wing Flaps -- AS DESIRED (0° 10° below 140 KIAS, 10° 40° below 95 KIAS).

NOTE

The landing gear may be used below 140 KIAS to increase the rate of descent.

BEFORE LANDING

- 1. Seats, Belts, Shoulder Harnesses -- ADJUST and LOCK.
- 2. Fuel Selector Valve -- BOTH.
- 3. Landing Gear -- DOWN (below 140 KIAS).
- 4. Landing Gear -- CHECK (observe main gear down and green indicator light illuminated.
- 5. Mixture -- RICH.
- 6. Carburetor Heat -- ON (apply full heat before closing throttle).
- 7. Propeller -- HIGH RPM.
- 8. Autopilot (if installed) -- OFF.

LANDING

NORMAL LANDING

- 1. Airspeed -- 70-80 KIAS (flaps UP).
- Wing Flaps -- AS DESIRED (0° 10° below 140 KIAS, 10° 40° below 95 KIAS).
- 3. Airspeed -- 65-75 KIAS (flaps DOWN).
- 4. Trim -- ADJUST.
- 5. Touchdown -- MAIN WHEELS FIRST.
- 6. Landing Roll -- LOWER NOSE WHEEL GENTLY.
- 7. Braking -- MINIMUM REQUIRED.

SHORT FIELD LANDING

- 1. Airspeed -- 70-80 KIAS (flaps UP).
- 2. Wing Flaps -- 40° (below 95 KIAS).
- 3. Airspeed -- MAINTAIN 63 KIAS.
- 4. Trim -- ADJUST.
- 5. Power -- REDUCE to idle as obstacle is cleared.
- 6. Touchdown -- MAIN WHEELS FIRST.
- 7. Brakes -- APPLY HEAVILY.
- 8. Wing Flaps -- RETRACT for maximum brake effectiveness.

1 October 1978

4-10

CESSNA MODEL R182

BALKED LANDING

- 1. Power -- FULL THROTTLE and 2400 RPM.
- 2. Carburetor Heat -- COLD.
- Wing Flaps -- RETRACT to 20°.
- 4. Climb Speed -- 75 KIAS.
- 5. Wing Flaps -- RETRACT slowly after reaching 75 KIAS.
- 6. Cowl Flaps -- OPEN.

AFTER LANDING

- 1. Wing Flaps -- UP.
- 2. Carburetor Heat -- COLD.
- 3. Cowl Flaps -- OPEN.

SECURING AIRPLANE

- 1. Parking Brake -- SET.
- 2. Throttle -- IDLE.
- 3. Avionics Power Switch, Electrical Equipment -- OFF.
- 4. Mixture -- IDLE CUT-OFF (pulled full out).
- 5. Ignition Switch -- OFF.
- 6. Master Switch -- OFF.
- 7. Control Lock -- INSTALL.
- 8. Fuel Selector Valve -- RIGHT.

1 October 1978

(

ĺ

l

ı

AMPLIFIED PROCEDURES

STARTING ENGINE

Ordinarily the engine starts easily with one or two pumps of the throttle in warm temperatures with the mixture full rich. If the engine is very hot, up to six pumps of the throttle should be used. In cooler weather, six to eight pumps of the throttle may be necessary. In extremely cold temperatures, it may be necessary to prime while cranking.

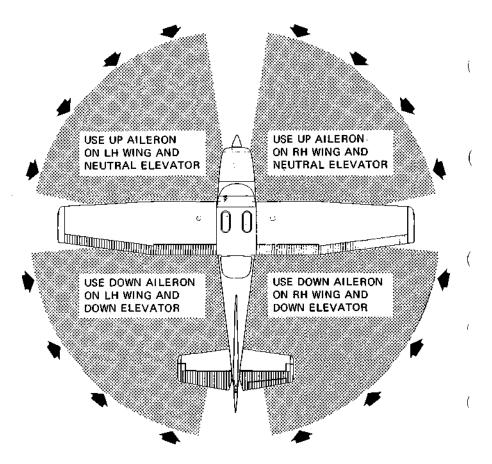
NOTE

Additional details concerning cold weather starting and operation may be found under COLD WEATHER OPERA-TION paragraphs in this section.

Weak intermittent firing followed by puffs of black smoke from the exhaust stack indicates overpriming or flooding. Excess fuel can be cleared from the combustion chambers by the following procedure: Set the mixture control full lean and the throttle full open; then crank the engine through several revolutions with the starter. Repeat the starting procedure without any additional priming.

If the engine is underprimed (most likely in cold weather with a cold engine) it will not fire at all. Additional priming will be necessary for the next starting attempt. As soon as the cylinders begin to fire, open the throttle slightly to keep it running.

If prolonged cranking is necessary, allow the starter motor to cool at frequent intervals, since excessive heat may damage the armature.


After starting, if the oil gage does not begin to show pressure within 30 seconds in the summertime and about twice that long in very cold weather, stop engine and investigate. Lack of oil pressure can cause serious engine damage. After starting, avoid the use of carburetor heat unless icing conditions prevail.

TAXIING

When taxiing, it is important that speed and use of brakes be held to a minimum and that all controls be utilized (see Taxiing Diagram, figure 4-2) to maintain directional control and balance.

The carburetor heat control knob should be pushed full in during all ground operations unless heat is absolutely necessary for smooth engine operation. When the knob is pulled out to the heat position, air entering the engine is not filtered.

CESSNA MODEL R182

CODE

WIND DIRECTION

NOTE

Strong quartering tail winds require caution. Avoid sudden bursts of the throttle and sharp braking when the airplane is in this attitude. Use the steerable nose wheel and rudder to maintain direction.

Figure 4-2. Taxiing Diagram

Taxiing over loose gravel or cinders should be done at low engine speed to avoid abrasion and stone damage to the propeller tips.

BEFORE TAKEOFF

WARM-UP

(

Ć

ľ

ł

Since the engine is closely cowled for efficient in-flight cooling, precautions should be taken to avoid overheating on the ground. Full power checks on the ground are not recommended unless the pilot has good reason to suspect that the engine is not turning up properly.

MAGNETO CHECK

The magneto check should be made at 1700 RPM as follows. Move ignition switch first to R position and note RPM. Next move switch back to BOTH to clear the other set of plugs. Then move switch to the L position, note RPM and return the switch to the BOTH position. RPM drop should not exceed 175 RPM on either magneto or show greater than 50 RPM differential between magnetos. If there is a doubt concerning operation of the ignition system, RPM checks at higher engine speeds will usually confirm whether a deficiency exists.

An absence of RPM drop may be an indication of faulty grounding of one side of the ignition system or should be cause for suspicion that the magneto timing is set in advance of the setting specified.

ALTERNATOR CHECK

Prior to flights where verification of proper alternator and alternator control unit operation is essential (such as night or instrument flights), a positive verification can be made by loading the electrical system momentarily (3 to 5 seconds) with the landing lights during the engine runup (1700 RPM). The ammeter will remain within a needle width of the initial reading if the alternator and alternator control unit are operating properly.

TAKEOFF

POWER CHECK

It is important to check takeoff power early in the takeoff run. Any sign of rough engine operation or sluggish engine acceleration is good cause for discontinuing the takeoff.

ŝ.

ſ

í

1

Full power runups over loose gravel are especially harmful to propeller tips. When takeoffs must be made over a gravel surface, it is very important that the throttle be advanced slowly. This allows the airplane to start rolling before high RPM is developed, and the gravel will be blown back of the propeller rather than pulled into it. When unavoidable small dents appear in the propeller blades they should be corrected immediately as described in Section 8 under Propeller Care.

After full power is applied, adjust the throttle friction lock clockwise to prevent the throttle from creeping from a maximum power position. Similar friction lock adjustment should be made as required in other flight conditions to maintain a fixed throttle setting.

WING FLAP SETTINGS

Normal takeoffs are accomplished with wing flaps 0° to 20°. Using 20° wing flaps reduces the ground run and total distance over an obstacle by approximately 20 per cent. Flap deflections greater than 20° are not approved for takeoff.

If 20° wing flaps are used for takeoff, they should be left down until all obstacles are cleared and a safe flap retraction speed of 70 KIAS is reached. To clear an obstacle with wing flaps 20°, an obstacle clearance speed of 55 KIAS should be used.

Soft field takeoffs are performed with 20° flaps by lifting the airplane off the ground as soon as practical in a slightly tail-low attitude. If no obstacles are ahead, the airplane should be leveled off immediately to accelerate to a safer climb speed.

With wing flaps retracted and no obstacles ahead, a climb-out speed of 80 KIAS would be most efficient.

CROSSWIND TAKEOFF

Takeoffs into strong crosswinds normally are performed with the minimum flap setting necessary for the field length, to minimize the drift angle immediately after takeoff. With the ailerons partially deflected into the wind, the airplane is accelerated to a speed slightly higher than normal, and then pulled off abruptly to prevent possible settling back to the runway while drifting. When clear of the ground, make a coordinated turn into the wind to correct for drift.

LANDING GEAR RETRACTION

Landing gear retraction normally is started after reaching the point over the runway where a wheels-down, forced landing on that runway

CESSNA MODEL R182

would become impractical. Since the landing gear swings downward approximately two feet as it starts the retraction cycle, damage can result by retracting it before obtaining at least that much ground clearance.

Before retracting the landing gear, the brakes should be applied momentarily to stop wheel rotation. Centrifugal force caused by the rapidly-spinning wheel expands the diameter of the tire. If there is an accumulation of mud or ice in the wheel wells, the rotating wheel may rub as it is retracted into the wheel well.

ENROUTE CLIMB

Normal climbs are performed at 90-100 KIAS with flaps up, 23 In. Hg. or full throttle (whichever is less) and 2400 RPM for the best combination of engine cooling, rate of climb and forward visibility. If it is necessary to climb rapidly to clear mountains or reach favorable winds at high altitudes, the best rate-of-climb speed should be used with maximum power. This speed is 88 KIAS at sea level, decreasing to 74 KIAS at 10,000 feet.

If an obstruction ahead requires a steep climb angle, a best angle-ofclimb speed should be used with landing gear and flaps up and maximum power. This speed is 64 KIAS at sea level, increasing to 66 KIAS at 10,000 feet.

The mixture should be full rich during climb at altitudes up to 3000 feet. Above 3000 feet, a full rich mixture setting may be used or the mixture may be leaned for increased power. Also, the mixture may be leaned as required for smooth engine operation. With the optional Cessna Economy Mixture Indicator, the mixture may be leaned to maintain the EGT indication corresponding to full rich at 3000 feet. This procedure will significantly improve high altitude climb performance.

CRUISE

l

ſ

Normal cruising is performed between 55% and 75% power. The corresponding power settings and fuel consumption for various altitudes can be determined by using your Cessna Power Computer or the data in Section 5.

NOTE

Cruising should be done at 75% power as much as practical until a total of 50 hours has accumulated or oil consumption has stabilized. This is to ensure proper seating of the

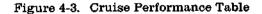
1 October 1978

4-17

٢.

rings and is applicable to new engines, and engines in service following cylinder replacement or top overhaul of one or more cylinders.

The Cruise Performance Table, figure 4-3, illustrates the true airspeed and nautical miles per gallon during cruise for various altitudes and percent powers. This table should be used as a guide, along with the available winds aloft information, to determine the most favorable altitudes and power setting for a given trip. The selection of cruise altitude on the basis of the most favorable wind conditions and the use of low power settings are significant factors that should be considered on every trip to reduce fuel consumption.


For reduced noise levels, it is desirable to select the lowest RPM in the green arc range for a given percent power that will provide smooth engine operation. The cowl flaps should be opened, if necessary, to maintain the cylinder head temperature at approximately two-thirds of the normal operating range (green arc).

Cruise performance data in this handbook and on the power computer is based on a recommended lean mixture setting which may be established as follows:

- 1. Lean the mixture until the engine becomes rough.
- 2. Enrichen the mixture to obtain smooth engine operation; then further enrichen an equal amount.

For best fuel economy at 75% power or less, the engine may be operated at the leanest mixture that results in smooth engine operation. This will (result in approximately 6% greater range than shown in this handbook accompanied by approximately 3 knots decrease in speed.

	75% POWER 65% POWER				55% POWER			
ALTITUDE	KTAS	NMPG	KTAS	NMPG	KTAS	NMPG		
2500	148	11.0	140	11.9	131	13.0		
5000	152	11.2	143	12.2	134	13.3		
7500	156	11.5	147	12.5	136	13.5		
10,000			150-	12.8	139	13.8		

1 October 1978

(

l

ĺ

١

Any change in altitude, power or carburetor heat will require a change in the recommended lean mixture setting and a recheck of the EGT setting (if installed).

Carburetor ice, as evidenced by an unexplained drop in manifold pressure, can be removed by application of full carburetor heat. Upon regaining the original manifold pressure indication (with heat off), use the minimum amount of heat (by trial and error) to prevent ice from forming. Since the heated air causes a richer mixture, readjust the mixture setting when carburetor heat is to be used continuously in cruise flight.

LEANING WITH A CESSNA ECONOMY MIXTURE INDICATOR (EGT)

Exhaust gas temperature (EGT) as shown on the optional Cessna Economy Mixture Indicator may be used as an aid for mixture leaning in cruising flight at 75% power or less. To adjust the mixture, using this indicator, lean to establish the peak EGT as a reference point and then enrichen the mixture by a desired increment based on data in figure 4-4.

As noted in the table, operation at peak EGT provides best fuel economy. This results in approximately 6% greater range than shown in this handbook accompanied by approximately 3 knots decrease in speed.

When leaning the mixture under some conditions, engine roughness may occur before peak EGT is reached. In this case, use the EGT corresponding to the onset of roughness as the reference point instead of peak EGT.

MIXTURE DESCRIPTION	EXHAUST GAS TEMPERATURE
RECOMMENDED LEAN (Pilot's Operating Handbook and Power Computer)	50 ^o F Rich of Peak EGT
BEST ECONOMY	Peak EGT

Figure 4-4. EGT Table

CESSNA MODEL R182

STALLS

The stall characteristics are conventional and aural warning is provided by a stall warning horn which sounds between 5 and 10 knots above the stall in all configurations.

Power-off stall speeds at maximum weight for both forward and aft C.G. positions are presented in Section 5.

BEFORE LANDING

In view of the relatively low drag of the extended landing gear and the high allowable gear operating speed (140 KIAS), the landing gear should be extended before entering the traffic pattern. This practice will allow more time to confirm that the landing gear is down and locked. As a further precaution, leave the landing gear extended in go-around procedures or traffic patterns for touch-and-go landings.

Landing gear extension can be detected by illumination of the gear down indicator light (green), absence of a gear warning horn with the throttle retarded below 12 inches of manifold pressure and/or the wing flaps extended beyond 25°, and visual inspection of the main gear position. Should the gear indicator light fail to illuminate, the light should be checked for a burned-out bulb by pushing to test. A burned-out bulb can be replaced in flight with the landing gear up (amber) indicator light.

LANDING

NORMAL LANDING

Landings should be made on the main wheels first to reduce the landing speed and the subsequent need for braking in the landing roll. The nose wheel is lowered gently to the runway after the speed has diminished (to avoid unnecessary nose gear load. This procedure is especially important in rough field landings.

SHORT FIELD LANDING

For a short field landing, make a power-off approach at 63 KIAS with 40° flaps and land on the main wheels first. Immediately after touchdown, lower the nose gear to the ground and apply heavy braking as required. For maximum brake effectiveness after all three wheels are on the ground, retract the flaps, hold full nose up elevator and apply maximum possible brake pressure without sliding the tires.

CROSSWIND LANDING

When landing in a strong crosswind, use the minimum flap setting required for the field length. Although the crab or combination method of drift correction may be used, the wing-low method gives the best control. After touchdown, hold a straight course with the steerable nose wheel and occasional braking if necessary.

BALKED LANDING

In a balked landing (go-around) climb, the wing flap setting should be reduced to 20° immediately after full power is applied. After all obstacles are cleared and a safe altitude and airspeed are obtained, the wing flaps should be retracted.

COLD WEATHER OPERATION

STARTING

(

ί

(

ļ

Prior to starting on cold mornings, it is advisable to pull the propeller through several times by hand to "break loose" or "limber" the oil, thus conserving battery energy.

NOTE

When pulling the propeller through by hand, treat it as if the ignition switch is turned on. A loose or broken ground wire on either magneto could cause the engine to fire.

In extremely cold (-18°C and lower) weather, the use of an external preheater and an external power source are recommended whenever possible to obtain positive starting and to reduce wear and abuse to the engine and the electrical system. Pre-heat will thaw the oil trapped in the oil cooler, which probably will be congealed prior to starting in extremely cold temperatures. When using an external power source, the position of the master switch is important. Refer to Section 9, Supplements, for Ground Service Plug Receptacle operating details.

Cold weather starting procedures are as follows:

With Preheat:

1. With ignition switch turned off, mixture full rich and throttle open 1/2 inch, prime the engine four to eight strokes.

(

ĺ

ł

Ĺ

NOTE

Use heavy strokes of the primer for best atomization of fuel. After priming, push primer all the way in and turn to the locked position to avoid the possibility of the engine drawing fuel through the primer.

- 2. Propeller -- CLEAR.
- 3. Avionics Power Switch -- OFF.
- 4. Master Switch -- ON.
- 5. Throttle -- PUMP several times.
- 6. Ignition Switch -- START (release to BOTH when engine starts).

Without Preheat:

- 1. Prime the engine five to six strokes with mixture full rich and throttle open 1/2 inch. Leave the primer charged and ready for a stroke.
- 2. Propeller -- CLEAR.
- 3. Avionics Power Switch -- OFF.
- 4. Master Switch -- ON.
- 5. Pump throttle rapidly to full open four times. Return to 1/2 inch open position.
- 6. Ignition Switch -- START.
- 7. Release ignition switch to BOTH when engine starts.
- 8. Continue to prime engine until it is running smoothly, or alternately, pump the throttle rapidly over first 1/4 of total travel.
- 9. Oil Pressure -- CHECK.
- 10. Primer -- LOCK.

NOTE

If the engine does not start during the first few attempts, or if engine firing diminishes in strength, it is probable that the spark plugs have been frosted over. Preheat must be used before another start is attempted.

CAUTION

Excessive pumping of the throttle may cause raw fuel to accumulate in the intake manifold, creating a fire hazard in the event of a backfire. If this occurs, maintain a cranking action to suck flames into the engine. An outside attendant with a fire extinguisher is advised for cold starts without preheat. CESSNA MODEL R182

SECTION 4 NORMAL PROCEDURES

OPERATION

During cold weather operations, no indication will be apparent on the oil temperature gage prior to takeoff if outside air temperatures are very cold. After a suitable warm-up period (2 to 5 minutes at 1000 RPM), accelerate the engine several times to higher engine RPM. If the engine accelerates smoothly and the oil pressure remains normal and steady, the airplane is ready for takeoff.

Rough engine operation in cold weather can be caused by a combination of an inherently leaner mixture due to the dense air and poor vaporization and distribution of the fuel-air mixture to the cylinders. The effects of these conditions are especially noticeable during operation on one magneto in ground checks where only one spark plug fires in each cylinder.

For optimum operation of the engine in cold weather, the appropriate use of carburetor heat may be necessary. The following procedures are indicated as a guideline:

1. Use the minimum carburetor heat required for smooth operation in takeoff, climb, and cruise.

NOTE

Care should be exercised when using partial carburetor heat to avoid icing. Partial heat may raise the carburetor air temperature to 0° to 21°C range where icing is critical under certain atmospheric conditions.

2. If the airplane is equipped with a carburetor air temperature gage, it can be used as a reference in maintaining carburetor air temperature at or slightly above the top of the yellow arc by application of carburetor heat.

HOT WEATHER OPERATION

The general warm temperature starting information in this section is appropriate. Avoid prolonged engine operation on the ground.

NOISE ABATEMENT

Increased emphasis on improving the quality of our environment requires renewed effort on the part of all pilots to minimize the effect of airplane noise on the public.

We, as pilots, can demonstrate our concern for environmental improvement, by application of the following suggested procedures, and thereby tend to build public support for aviation:

- 1. Pilots operating aircraft under VFR over outdoor assemblies of persons, recreational and park areas, and other noise-sensitive areas should make every effort to fly not less than 2000 feet above the surface, weather permitting, even though flight at a lower level may be consistent with the provisions of government regulations.
- 2. During departure from or approach to an airport, climb after takeoff and descent for landing should be made so as to avoid prolonged flight at low altitude near noise-sensitive areas.

NOTE

The above recommended procedures do not apply where they would conflict with Air Traffic Control clearances or instructions, or where, in the pilot's judgment, an altitude of less than 2000 feet is necessary for him to adequately exercise his duty to see and avoid other aircraft.

The certificated noise level for the Model R182 at 3100 pounds maximum weight is 70.7 dB(A). No determination has been made by the Federal Aviation Administration that the noise levels of this airplane are or should be acceptable or unacceptable for operation at, into, or out of, any airport.

CESSNA MODEL R182

i

ŝ

SECTION 5 PERFORMANCE

· -----

SECTION 5 PERFORMANCE

TABLE OF CONTENTS

Page

Introduction	5-3
Use of Performance Charts	5-3
Sample Problem	5-3
Takeoff	5-4
Cruise	
Landing	
Demonstrated Operating Temperature	
Figure 5-1, Airspeed Calibration - Normal Static Source	
Airspeed Calibration - Alternate Static Source	5-9
Figure 5-2, Temperature Conversion Chart	-10
Figure 5-3, Stall Speeds	-11
	-12
Takeoff Distance - 2800 Lbs And 2500 Lbs 5	-13
Figure 5-5, Rate Of Climb - Maximum	-14
Figure 5-6, Time, Fuel, And Distance To Climb -	
	-15
Time, Fuel, And Distance To Climb -	
	-16
Figure 5-7, Cruise Performance - 2000 Feet	-17
Cruise Performance - 4000 Feet	-18
	-19
	-20
	-21
	-22
	-23
	-24
	-25

1 October 1978

5-1/(5-2 blank)

(

ŕ

INTRODUCTION

Performance data charts on the following pages are presented so that you may know what to expect from the airplane under various conditions, and also, to facilitate the planning of flights in detail and with reasonable accuracy. The data in the charts has been computed from actual flight tests with the airplane and engine in good condition and using average piloting techniques.

It should be noted that the performance information presented in the range and endurance profile charts allows for 45 minutes reserve fuel based on 45% power. Fuel flow data for cruise is based on the recommended lean mixture setting. Some indeterminate variables such as mixture leaning technique, fuel metering characteristics, engine and propeller condition, and air turbulence may account for variations of 10% or more in range and endurance. Therefore, it is important to utilize all available information to estimate the fuel required for the particular flight.

USE OF PERFORMANCE CHARTS

Performance data is presented in tabular or graphical form to illustrate the effect of different variables. Sufficiently detailed information is provided in the tables so that conservative values can be selected and used to determine the particular performance figure with reasonable accuracy.

SAMPLE PROBLEM

The following sample flight problem utilizes information from the various charts to determine the predicted performance data for a typical flight. The following information is known:

AIRPLANE CONFIGURATION	
Takeoff weight	3050 Pounds
Usable fuel	88 Gallons
TAKEOFF CONDITIONS	
Field pressure altitude	1500 Feet
Temperature	28°C (16°C above standard)
Wind component along runway	12 Knot Headwind
Field length	3500 Feet

1 October 1978

5-3

SECTION 5 PERFORMANCE

CESSNA MODEL R182

CRUISE CONDITIONS
Total distance
Pressure altitude
Temperature
Expected wind enroute
-

LANDING CONDITIONS Field pressure altitude Temperature Field length 845 Nautical Miles 7500 Feet 16°C (16°C above standard) 10 Knot Headwind

2000 Feet 25°C 3000 Feet

TAKEOFF

The takeoff distance chart, figure 5-4, should be consulted, keeping in mind that the distances shown are based on the short field technique. Conservative distances can be established by reading the chart at the next higher value of weight, altitude and temperature. For example, in this particular sample problem, the takeoff distance information presented for a weight of 3100 pounds, pressure altitude of 2000 feet and a temperature of 30° C should be used and results in the following:

Ground roll	1085 Feet
Total distance to clear a 50-foot obstacle	2110 Feet

These distances are well within the available takeoff field length. However, a correction for the effect of wind may be made based on Note 3 of the takeoff chart. The correction for a 12 knot headwind is:

> 12 Knots 9 Knots × 10% = 13% Decrease

This results in the following distances, corrected for wind:

Ground roll, zero wind	1085		
Decrease in ground roll			
(1085 feet × 13%)	<u>.141</u>		
Corrected ground roll	944 Feet		
Total distance to clear a			
50-foot obstacle, zero wind	2110		
Decrease in total distance			
(2110 feet × 13%)	274		
Corrected total distance			
to clear a 50-foot obstacle	1836 Feet		

1 October 1978

ť

i

CRUISE

(

I

The cruising altitude should be selected based on a consideration of trip length, winds aloft, and the airplane's performance. A cruising altitude and the expected wind enroute have been given for this sample problem. However, the power setting selection for cruise must be determined based on several considerations. These include the cruise performance characteristics presented in figure 5-7, the range profile chart presented in figure 5-8, and the endurance profile chart presented in figure 5-9.

The relationship between power and range is illustrated by the range profile chart. Considerable fuel savings and longer range result when lower power settings are used.

The range profile chart indicates that use of 65% power at 7500 feet yields a predicted range of 964 nautical miles with no wind. The endurance profile chart shows a corresponding 6.6 hours. Using this information, the estimated distance can be determined for the expected 10 knot headwind at 7500 feet as follows:

Range, zero wind	964
Decrease in range due to wind	
(6.6 hours × 10 knot headwind)	<u>66</u>
Corrected range	898 Nautical Miles

This indicates that the trip can be made without a fuel stop using approximately 65% power.

The cruise performance chart for 8000 feet pressure altitude is entered using 20°C above standard temperature. These values most nearly correspond to the planned altitude and expected temperature conditions. The power setting chosen is 2200 RPM and 21 inches of manifold pressure, which results in the following:

Power	65%
True airspeed	150 Knots
Cruise fuel flow	11.7 GPH

The power computer may be used to determine power and fuel consumption more accurately during the flight.

FUEL REQUIRED

The total fuel requirement for the flight may be estimated using the performance information in figures 5-6 and 5-7. For this sample problem, figure 5-6 shows that a normal climb from 2000 feet to 8000 feet requires 3.4

ţ.

ſ

í.

í

gallons of fuel. The corresponding distance during the climb is 16 nautical miles. These values are for a standard temperature and are sufficiently accurate for most flight planning purposes. However, a further correction for the effect of temperature may be made as noted on the climb chart. The approximate effect of a non-standard temperature is to increase the time, fuel, and distance by 10% for each 10°C above standard temperature, due to the lower rate of climb. In this case, assuming a temperature 16°C above standard, the correction would be:

 $\frac{16^{\circ}C}{10^{\circ}C} \times 10\% = 16\%$ Increase

With this factor included, the fuel estimate would be calculated as follows:

Fuel to climb, standard temperature	3.4
Increase due to non-standard temperature	
(3.4 × 16%)	<u>0.5</u>
Corrected fuel to climb	3.9 Gallons

Using a similar procedure for the distance during climb results in 19 nautical miles.

The resultant cruise distance is:

Total distance	845
Climb distance	<u>-19</u>
Cruise distance	826 Nautical Miles

With an expected 10 knot headwind, the ground speed for cruise is predicted to be:

150 <u>-10</u> 140 Knots

Therefore, the time required for the cruise portion of the trip is:

826 Nautical Miles = 5.9 Hours 140 Knots

The fuel required for cruise is:

5.9 hours × 11.7 gallons/hour = 69.0 Gallons

The total estimated fuel required is as follows:

Engine start, taxi, and takeoff	2.0
Climb	3.9
Cruise	<u>69.0</u>
Total fuel required	74.9 Gallons

This will leave a fuel reserve of:

88.0 -<u>74.9</u> 13.1 Gallons

Once the flight is underway, ground speed checks will provide a more accurate basis for estimating the time enroute and the corresponding fuel required to complete the trip with ample reserve.

LANDING

A procedure similar to take off should be used for estimating the landing distance at the destination airport. Figure 5-10 presents landing distance information for the short field technique. The distances corresponding to 2000 feet pressure altitude and a temperature of 30°C are as follows:

> Ground roll 680 Feet Total distance to clear a 50-foot obstacle 1450 Feet

A correction for the effect of wind may be made based on Note 2 of the landing chart using the same procedure as outlined for takeoff.

DEMONSTRATED OPERATING TEMPERATURE

Satisfactory engine cooling has been demonstrated for this airplane with an outside air temperature 23°C above standard. This is not to be considered as an operating limitation. Reference should be made to Section 2 for engine operating limitations.

į.

AIRSPEED CALIBRATION

NORMAL STATIC SOURCE

FLAPS UP													
KIAS KCAS	50 60	60 66	70 73	80 81	90 90	100 99	110 109	120 118	1 30 128	140 137	150 146	160 155	170 165
FLAPS 200													_
KLAS KCAS	40 54	50 59	60 65	70 73	80 81	90 90	95 95						
FLAPS 40 ⁰													
KIAS KCAS	40 53	50 58	60 65	70 73	80 81	90 91	95 96					 	·

Figure 5-1. Airspeed Calibration (Sheet 1 of 2)

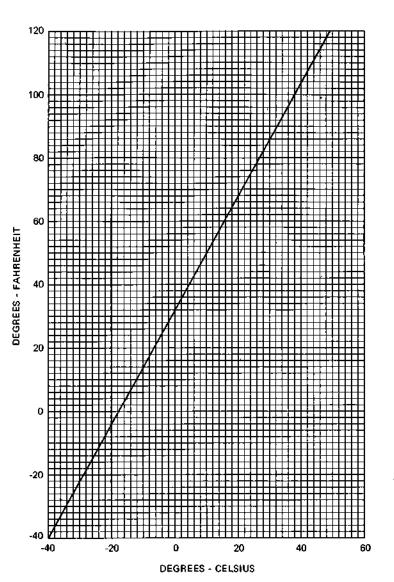
- --- ----

1 October 1978

Ĺ

AIRSPEED CALIBRATION ALTERNATE STATIC SOURCE

HEATER/VENTS AND WINDOWS CLOSED


FLAPS UP			_								
NORMAL KIAS ALTERNATE KIAS	60 62	70 72	80 83	90 93	100 103	110 113	120 123	130 133	140 143	150 153	160 163
FLAPS 200			_				-				
NORMAL KIAS ALTERNATE KIAS	50 51	60 62	70 73	80 84	90 94	95 99					
FLAPS 40 ⁰			_	_						-	
NORMAL KIAS ALTERNATE KIAS	40 39	50 51	60 62	70 73	80 82	90 92	95 96	 	• - • - • •		

HEATER/VENTS OPEN AND WINDOWS CLOSED

FLAPS UP											- —
NORMAL KIAS ALTERNATE KIAS	60 60	70 70	80 81	90 90	100 100	110 110	120 120	130 129	140 139	150 149	160 159
FLAPS 20 ⁰					_		-				
NORMAL KIAS ALTERNATE KIAS	50 50	60 61	70 71	80 81	90 91	95 96		 			
FLAPS 40 ⁰											
NORMAL KIAS ALTERNATE KIAS	40 38	50 48	60 58	70 69	80 78	90 88	95 93				

Figure 5-1. Airspeed Calibration (Sheet 2 of 2)

SECTION 5 PERFORMANCE

TEMPERATURE CONVERSION CHART

Figure 5-2. Temperature Conversion Chart

STALL SPEEDS

CONDITIONS: Power Off

NOTES:

ſ

Ć

ţ

- 1. Maximum altitude loss during a stall recovery may be as much as 240 feet.
- 2, KIAS values are approximate.

MOST REARWARD CENTER OF GRAVITY

	FLAP DEFLECTION		ANGLE OF BANK										
WEIGHT LBS I		0	90	34	0 ⁰	4	5 ⁰	60°					
		KIAS	KÇAS	KIAS	KCAS	KIAS	KCAS	KIAS	KCAS				
	UP	40	54	43	58	48	64	57	76				
3100	20 ⁰	38	51	41	55	46	61	55	72				
	40 ⁰	35	50	38	54	43	59	52	71				

MOST FORWARD CENTER OF GRAVITY

			ANGLE OF BANK									
WEIGHT LBS	FLAP DEFLECTION	с)o	3	0 ⁰	4	5 ⁰	60 ⁰				
		KIAS	KCAS	KIAS	KCAS	KIAS	KCAS	KIAS	KCAS			
	UP	42	55	45	59	50	65	59	78			
3100	20 ⁰	40	52	41	56	46	62	55	74			
	40 ⁰	37	52	40	56	45	62	54	74			

Figure 5-3. Stall Speeds

TAKEOFF DISTANCE

MAXIMUM WEIGHT 3100 LBS

SHORT FIELD

CONDITIONS: Flaps 20⁰ 2400 RPM and Full Throttle Prior to Brake Release Cowl Flaps Open Paved, Level, Dry Runway Zero Wind

NOTES:

مدين ملك

- 1. Short field technique as specified in Section 4.
- 2. Prior to takeoff from fields above 3000 feet elevation, the mixture should be leaned to give maximum power in a full throttle, static runup.
- 3. Decrease distances 10% for each 9 knots headwind. For operation with tailwinds up to 10 knots, increase distances by 10% for each 2 knots.
- 4. Where distance value has been deleted, climb performance after lift-off is less than 150 fpm at takeoff speed.
- 5. For operation on a dry, grass runway, increase distances by 15% of the "ground roll" figure.

	TAKEOFF SPEED PRESS KIAS ALT		0°C		10 ⁰ C		20 ⁰ C		30 ^о С	4	Ю ^о С		
WEIGHT LBS	KI Lift		ALT FT		TOTAL TO CLEAR 50 FT OBS		TOTAL TO CLEAR 50 FT OBS						
3100	47	55	S.L. 1000 2000 3000 4000 5000 6000 7000 8000	735 800 875 1045 1145 1255 1380 1520	1410 1545 1690 2055 2280 2550 2870 3260	790 860 940 -1030 1125 1235 1355 1490 1640	1 515 1660 1820 2010 2225 2475 2775 3140 3600	850 925 1010 1105 1210 1330 1460 1605 1770	1625 1785 1960 2165 2405 2690 3030 3459 3990	910 995 1085 1190 1300 1430 1570 1730	1745 1915 2110 2340 2605 2925 3310 3805	975 1065 1165 1275 1395 1535 1685	1870 2060 2275 2525 2825 3185 3635

Figure 5-4. Takeoff Distance (Sheet 1 of 2)

TAKEOFF DISTANCE

2800 LBS AND 2500 LBS

SHORT FIELD

REFER TO SHEET 1 FOR APPROPRIATE CONDITIONS AND NOTES.

		EOFF	PRESS		0ºC		10 ⁰ C	:	20 ⁰ C		30°C		40 ⁰ C
LBS	KI. LIFT OFF	A\$ AT 50 FT	ALT FT		TOTAL TO CLEAR 50 FT OBS		TOTAL TO CLEAR 50 FT OBS	GRND ROLL	TOTAL TO CLEAR 50 FT OBS		TOTAL TO CLEAR 50 FT OBS	GRND ROLL	TOTAL TO CLEAR 50 FT OBS
2800	45	53	S.L. 1000 2000 3000 4000 5000 6000 7000 8000	580 635 690 755 820 900 985 1080 1185	1115 1215 1325 1445 1585 1745 1925 2140 2385	625 680 745 810 885 970 1060 1165 1280	1195 1300 1420 1555 1705 1880 2080 2315 2595	670 730 800 870 950 1040 1140 1255 1380	1275 1395 1520 1670 1835 2025 2250 2510 2825	720 785 855 935 1020 1120 1225 1350 1485	1365 1490 1630 1790 1975 2185 2430 2725 3080	770 840 915 1000 1095 1200 1315 1450 1595	1460 1595 1750 2125 2355 2630 2960 3365
2500	42	50	S.L. 1000 2000 3000 4000 5000 6000 7000 8000	450 490 530 580 630 690 755 825 905	870 940 1020 1110 1210 1325 1450 1595 1760	485 525 570 625 680 745 810 890 975	925 1005 1090 1190 1300 1420 1560 1715 1900	520 565 615 670 730 800 875 955 1050	990 1075 1165 1270 1390 1525 1675 1850 2050	555 605 660 720 785 855 935 1025 1130	1055 1145 1245 1360 1490 1635 1800 1990 2210	595 645 705 770 840 915 1005 1100 1210	1125 1220 1330 1455 1590 1750 1930 2140 2385

Figure 5-4. Takeoff Distance (Sheet 2 of 2)

SECTION 5 PERFORMANCE

CESSNA MODEL R182

SECTION 5 PERFORMANCE

CESSNA MODEL R182

γ÷

RATE OF CLIMB

CONDITIONS: Flaps Up Gear Up 2400 RPM Full Throttle Mixture Full Rich Cowl Flaps Open

NOTE:

Mixture may be leaned above 3000 feet for increased power.

WEIGHT	PRESS		RATE OF CLIMB - FPM							
LBS	ALT FT	KIAS	-20°C	0ºC	20°C	40 ⁰ C				
3100	S.L. 2000 4000 6000 8000 10,000 12,000	88 85 82 80 77 74 72	1270 1110 945 785 625 465 305	1195 1035 875 715 555 395 235	1120 960 805 645 485 325 165	1045 890 730 570 415 				

Figure 5-5. Rate of Climb

TIME, FUEL, AND DISTANCE TO CLIMB

MAXIMUM RATE OF CLIMB

CONDITIONS: Flaps Up Gear Up 2400 RPM Full Throttle Mixture Full Rich Cowl Flaps Open Standard Temperature

NOTES:

t,

t,

1. Add 2.0 gallons of fuel for engine start, taxi and takeoff allowance.

2. Mixture may be leaned above 3000 feet for increased power.

Increase time, fuel and distance by 10% for each 10^oC above standard temperature.

4. Distances shown are based on zero wind.

WEIGHT	PRESSURE	ТЕМР	CLIMB	RATE OF	F	ROM SEA LE	VEL
LBS	ALTITUDE FT	°C	SPEED KIAS	CLIMB FPM	TIME MIN	FUEL USED GALLONS	DISTANCE NM
3100	S.L.	15	88	1140	0	0	0
	1000	13	86	1065	1	0.4	1
	2000	11	85	995	2	0.8	3
	3000	9	84	920	3	1.2	4
	4000	7	82	850	4	1.6	6
	5000	5	81	775	5	2.1	8
	6000	3	80	705	7	2.6	10
	7000	1	78	630	8	3.1	12
	8000	-1	. 77	560	10	3.7	15
	9000	- 3	76	485	12	4.4	18
	10,000	- 5	74	415	14	5.1	21
	11,000	-7	73	340	17	6.0	25
	12,000	-9	72	265	20	7.1	30

Figure 5-6. Time, Fuel, and Distance to Climb (Sheet 1 of 2)

ţ.

Ć

ć

TIME, FUEL, AND DISTANCE TO CLIMB

NORMAL CLIMB - 95 KIAS

CONDITIONS: Flaps Up Gear Up 2400 RPM 23 Inches Hg or Full Throttle Mixture Full Rich Cowl Flaps Open Standard Temperature

NOTES:

ŀ

- 1. Add 2.0 gallons of fuel for engine start, taxi and takeoff allowance.
- 2. Mixture may be leaned above 3000 feet for increased power.
- 3. Increase time, fuel and distance by 10% for each 10°C above standard temperature.
- 4. Distances shown are based on zero wind.

	PRESSURE		RATE OF	F	ROM SEA LEV	= EL	
WEIGHT LBS	ALTITUDE FT	TEMP °C	CLIMB FPM	TIME MIN	FUEL USED GALLONS		
3100	S.L.	15	680	0	0	0]
	1000	13	680	1	0.5	2	ł
	2000	11	680	3	1.0	5	
	3000	9	680	4	1.5	7	
	4000	7	680	6	2.0	10	
	5000	5	680	7	2.6	12	
	6000	3	640	9	3.1	15	
	7000	1	565	11	3.7	18	
	8000	-1	485	12	4.4	21	
	9000	- 3	410	15	5.2	25	
	10,000	- 5	330	18	6.1	30	
	11,000	-7	255	21	7.3	37	
	12,000	-9	175	26	8.8	46	J

Figure 5-6. Time, Fuel, and Distance to Climb (Sheet 2 of 2)

SECTION 5 PERFORMANCE

CRUISE PERFORMANCE

PRESSURE ALTITUDE 2000 FEET

CONDITIONS: 3100 Pounds Recommended Lean Mixture Cowi Flaps Closed

NOTE For best fuel economy, operate at the leanest mixture that results in smooth engine operation or at peak EGT if an EGT indicator is installed.

ъл .

			°C BELO NDARD 1 -9°C			TANDAR IPERATU 11°C			^D C ABOV NDARD 1 31 ⁰ C	
RPM	MP	% BHP	KTAS	GPH	% BHP	KTAS	GPH	% BHP	KTAS	GPH
2400	23 22 21 20	74 69 64	143 140 136	13.3 12.4 11.6	76 71 67 62	148 145 141 137	13.6 12.8 12.0 11.3	73 69 64 60	149 146 142 138	13.2 12.4 11.6 10.9
2300	23 22 21 20	75 71 66 61	145 141 137 134	13.5 12.7 11.9 11.2	72 68 64 59	146 142 138 135	13.1 12.3 11.5 10.8	70 66 62 57	147 143 139 135	12.6 11.9 11.2 10.5
2200	23 22 21 20	72 67 63 59	142 139 135 131	12.9 12.1 11.4 10.7	69 65 61 57	143 140 136 132	12.5 11.7 11.0 10.3	67 63 59 55	144 141 137 133	12.1 11.4 10.7 10.0
2100	23 22 21 20 19 18	68 64 60 55 51 47	139 136 132 128 124 119	12.2 11.5 10.9 10.1 9.4 8.7	66 62 58 54 50 45	140 137 133 129 124 119	11.8 11.2 10.5 9.8 9.1 8.5	63 60 56 52 48 44	141 137 134 129 125 120	11.5 10.8 10.2 9.5 8.9 8.2

1 October 1978

SECTION 5 PERFORMANCE

(

CRUISE PERFORMANCE

PRESSURE ALTITUDE 4000 FEET

CONDITIONS: 3100 Pounds Recommended Lean Mixture Cowl Flaps Closed

NOTE For best fuel economy, operate at the leanest mixture that results in smooth engine operation or at peak EGT if an EGT indicator is installed.

			^o C BELO NDARD 1 -13 ^o C		-	TANDAR NPERATU 7ºC			°C ABOV NDARD 1 27°C	
RPM	MP	% BHP	KTAS	GPH	% BHP	KTAS	GPH	% ВНР	KTAS	GPH
2400	23 22 21 20	76 71 66	148 144 140	13.7 12.8 12.0	78 73 69 64	153 149 145 141	14.0 13.2 12.4 11.6	75 71 66 62	154 150 146 142	13.6 12.8 12.0 11.2
2300	23	77	149	14.0	75	150	13.5	72	151	13.0
	22	73	145	13.1	70	147	12.7	68	148	12.2
	21	68	142	12.3	66	143	11.9	64	144	11.5
	20	64	138	11.5	61	139	11.1	59	140	10.8
2200	23	74	146	13.3	71	148	12.9	69	149	12.4
	22	70	143	12.5	67	144	12.1	65	145	11.7
	21	65	139	11.8	63	140	11.4	61	141	11.0
	20	61	135	11.0	59	136	10.7	57	137	10.3
2100	23	70	143	12.7	68	145	12.2	65	146	11.8
	22	66	140	11.9	64	141	11.5	62	142	11.2
	21	62	136	11.2	60	137	10.9	58	138	10.5
	20	58	132	10.5	55	133	10.1	54	134	9.8
	19	53	128	9.8	51	12 9	9.5	50	129	9.2
	18	49	123	9.1	47	124	8.8	46	124	8.5

Figure 5-7. Cruise Performance (Sheet 2 of 6)

CRUISE PERFORMANCE

PRESSURE ALTITUDE 6000 FEET

CONDITIONS: 3100 Pounds Recommended Lean Mixture Cowl Flaps Closed

NOTE For best fuel economy, operate at the leanest mixture that results in smooth engine operation or at peak EGT if an EGT indicator is installed.

			^o C BELO NDARD 1 -17 ^o C	D TEMP TEMPERATURE STANDARD TEL C 3ºC 23ºC		-				
RPM	мр	% BHP	KTAS	GPH	% BHP	KTAS	GPH	% BHP	KTAS	GPH
2400	22 21 20 19	73 69 64	148 145 140	13.2 12.3 11.5	75 71 66 61	154 150 146 141	13.6 12.7 11.9 11.1	73 68 64 59	155 151 147 142	13.1 12.3 11.5 10.8
2300	23 22 21 20	75 70 66	150 146 142	13.5 12.7 11.9	77 72 68 63	155 151 147 143	13.9 13.0 12.2 11.5	74 70 66 61	156 152 148 144	13.4 12.6 11.8 11.1
2200	23 22 21 20	76 72 67 63	151 147 144 140	13.7 12.9 12.1 11.4	74 69 65 61	152 148 145 141	13.3 12.5 11.7 11.0	71 67 63 59	153 150 146 141	12.8 12.1 11.4 10.7
2100	23 22 21 20 19 18	72 68 64 60 55 51	148 144 141 137 132 128	13.1 12.3 11.6 10.9 10.1 9.4	70 66 62 57 53 49	149 145 142 137 133 128	12.6 11.9 11.2 10.5 9.8 9.1	68 64 60 56 52 48	150 146 142 138 133 128	12.2 11.5 10.8 10.2 9.5 8.8

- - - - -

1 October 1978

Į.

· SECTION 5 PERFORMANCE

- 7 {

CRUISE PERFORMANCE

PRESSURE ALTITUDE 8000 FEET

CONDITIONS: 3100 Pounds Recommended Lean Mixture Cowl Flaps Closed

NOTE For best fuel economy, operate at the leanest mixture that results in smooth engine operation or at peak EGT if an EGT indicator is installed.

			°C BELO NDARD 1 -21°C			TANDAR IPERATI - 1ºC			°C ABOV NDARD 1 19°C	
RPM	. MP	% BHP	KTAS	GPH	% BHP	KTA\$	GPH	% BHP	KTAS	GPH
2400	21	76	153	13.6	73	154	13.1	70	155	12.7
	20	71	149	12.7	68	150	12.3	66	151	11.9
	19	66	145	11.9	63	146	11.5	61	147	11.1
	18	61	140	11.1	59	141	10.7	57	142	10.3
2300	21	73	151	13.1	70	152	12.6	68	153	12.2
	20	68	147	12.2	65	148	11.8	63	149	11.4
	19	63	142	11.4	61	143	1 1.1	59	144	10.7
	18	58	138	10.6	56	138	10.3	54	139	9.9
2200	21	70	148	12.5	67	149	12.1	65	150	11.7
	20	65	144	11.7	63	145	11.3	60	146	11.0
	19	60	140	,11.0	68	141	10.6	56	141	10.3
	18	56	135	10.2	54	136	9.9	52	136	9.5
2100	21	66	145	11.9	64	146	11.5	61	147	11.2
	20	62	141	11.2	59	142	10.8	57	142	10.5
	19	57	137	10.5	55	137	10.1	53	138	9.8
	18	53	132	9.7	51	132	9.4	49	133	9.1
	17	49	127	9.0	47	127	8.7	45	127	8.4

Figure 5-7. Cruise Performance (Sheet 4 of 6)

1 October 1978

-- - -

.

ť

CRUISE PERFORMANCE

PRESSURE ALTITUDE 10,000 FEET

CONDITIONS: 3100 Pounds Recommended Lean Mixture Cowl Flaps Closed

NOTE

For best fuel economy, operate at the leanest mixture that results in smooth engine operation or at peak EGT if an EGT indicator is installed.

		^O C ABOVE NDARD TEMP 15 ^O C							
MP	% BHP	KTAS	GPH	% BHP	KTAS	GPH	% BHP	KTAS	GPH
20	73	154	13.1	70	155	12.6	68	156	12.2
19	68	149	12.2	65	150	11.8	63	151	11.4
18	63	145	11.4	60	145	11.0	58	146	10.6
17	58	140	10.6	56	140	10.2	54	141	9.9
20	70	151	12.6	67	152	12.2	65	153	11.8
19	65	1 47	11.8	63	148	11.4	61	149	11.0
18	60	142	11.0	58	143	10.6	56	143	10.3
17	56	137	10.2	53	138	9.8	52	138	9.5
20	67	149	12.1	65	150	11.7	62	150	11.3
19	62	144	11.3	60	145	10.9	58	146	10.6
18	58	140	10.5	56	140	10.2	54	140	9.9
17	53	134	9.8	51	135	9.4	49	135	9.1
20	64	146	11.5	61	146	11.2	59	147	10.8
19	59	141	10.8	57	142	10.4	55	142	10.1
18	55	136	10.1	53	137	9.7	51	137	9.4
17	51	131	9.3	49	131	9.0	47	131	8.7
16	46	125	8.6	44	125	8.3	43	125	8.1
	20 19 18 17 20 19 18 17 20 19 18 17 20 19 18 17	STAN MP % BHP 20 73 19 68 18 63 17 58 20 70 19 65 18 60 17 56 20 67 19 62 18 58 17 53 20 64 19 59 18 55 17 51	STANDARD 1 MP % KTAS 20 73 154 19 68 149 18 63 145 17 58 140 20 70 151 19 65 147 18 60 142 17 56 137 20 67 149 19 62 144 18 58 140 17 56 137 20 67 149 19 62 144 18 58 140 17 53 134 20 64 146 19 59 141 18 55 136 17 51 131	STANDARD TEMP -25°C MP % BHP KTAS GPH 20 73 154 13.1 19 68 149 12.2 18 63 145 11.4 17 58 140 10.6 20 70 151 12.6 19 65 147 11.8 18 60 142 11.0 17 56 137 10.2 20 67 149 12.1 19 62 144 11.3 18 58 140 10.5 17 53 134 9.8 20 64 146 11.5 19 59 141 10.8 18 55 136 10.1 17 51 131 9.3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	STANDARD TEMP -25°C TEMPERATURE -5°C MP $\frac{\%}{BHP}$ KTAS GPH $\frac{\%}{BHP}$ KTAS GPH 20 73 154 13.1 70 155 12.6 19 68 149 12.2 65 150 11.8 18 63 145 11.4 80 145 11.0 17 58 140 10.6 56 140 10.2 20 70 151 12.6 67 152 12.2 19 65 147 11.8 63 1445 11.0 17 56 137 10.2 53 138 9.8 20 67 149 12.1 65 150 11.7 19 62 144 11.3 60 145 10.9 18 58 140 10.5 56 140 10.2 17 53 134 9.8 51 <	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	STANDARD TEMP -25°CTEMPERATURE -5°CSTANDARD T 15°CMP $\frac{\%}{BHP}$ KTASGPH $\frac{\%}{BHP}$ KTASGPH $\frac{\%}{BHP}$ KTASGPH $\frac{\%}{BHP}$ KTAS207315413.17015512.668156196814912.26515011.863151186314511.46014511.058146175814010.65614010.254141207015112.66715212.265153196514711.86314811.461149186014211.05814310.656143175613710.2531389.862138206714912.16515011.762150196214411.36014510.958146185814010.55614010.25414017531349.8511359.449135206414611.56114611.259147195914110.85714210.455142185513610.1531379.7511371751

Figure 5-7. Cruise Performance (Sheet 5 of 6)

1 October 1978

SECTION 5 PERFORMANCE

÷

ł

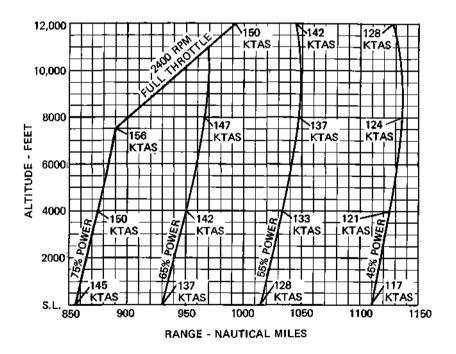
CRUISE PERFORMANCE

PRESSURE ALTITUDE 12,000 FEET

CONDITIONS: 3100 Pounds Recommended Lean Mixture Cowt Flaps Closed

NOTE For best fuel economy, operate at the leanest mixture that results in smooth engine operation or at peak EGT if an EGT indicator is installed.

			°C BELO NDARD 1 -29°C		_	TANDAR IPERATU -9°C			°C ABON NDARD 1 11°C	_	
RPM	MP	% BHP	KTAS	GPH	% BHP	KTAS	GPH	% BHP	KTAS	GPH	
2400	18 17 16 15	65 60 55 50	149 144 138 132	11.7 10.9 10.0 9.2	62 57 53 48	150 145 139 132	11.3 10.5 9.7 8. 8	60 55 51 46	151 145 139 132	10.9 10.1 9.4 8.6	
2300	18 17 16 15	62 57 53 48	147 142 136 130	11:3 10.5 9.7 8.8	60 55 51 46	148 142 136 130	10.9 10.1 9.3 8.5	58 53 49 44	148 142 136 129	10.6 9.8 9.0 8.3	-
2200	18 17 1 6	60 55 50	144 139 133	10.9 10.1 9.3	58 53 48	145 139 133	10.5 9.7 9.0	56 51 47	145 139 133	10.2 9.4 8.7	
2100	18 17 16	57 52 48	141 136 130	10.4 9.6 8.9	55 50 46	141 136 130	10.0 9.3 8.6	53 49 44	142 136 129	9.7 9.0 8.3	
		i									


Figure 5-7. Cruise Performance (Sheet 6 of 6)

RANGE PROFILE 45 MINUTES RESERVE 88 GALLONS USABLE FUEL

CONDITIONS: 3100 Pounds Recommended Lean Mixture for Cruise Standard Temperature Zero Wind

NOTES:

- 1. This chart allows for the fuel used for engine start, taxi, takeoff and climb, and the distance during a normal climb as shown in figure 5-6.
- 2. Reserve fuel is based on 45 minutes at 45% BHP and is 6.3 gallons.

Figure 5-8. Range Profile

SECTION 5 PERFORMANCE

CESSNA MODEL R182

Į,

(.

ENDURANCE PROFILE 45 MINUTES RESERVE 88 GALLONS USABLE FUEL

CONDITIONS: 3100 Pounds Recommended Lean Mixture for Cruise Standard Temperature

NOTES:

- 1. This chart allows for the fuel used for engine start, taxi, takeoff and climb, and the time during a normal climb as shown in figure 5-6.
- 2. Reserve fuel is based on 45 minutes at 45% BHP and is 6.3 gallons.

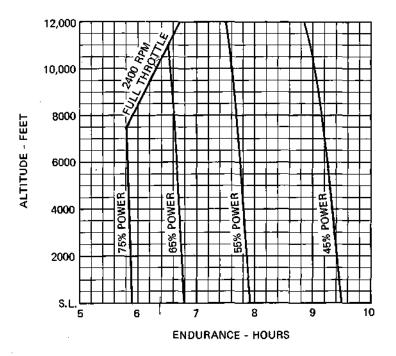


Figure 5-9. Endurance Profile

LANDING DISTANCE

SHORT FIELD

CONDITIONS: Flaps 40^o Power Off Maximum Braking Paved, Level, Dry Runway Zero Wind

NOTES:

- 1. Short field technique as specified in Section 4.
- 2. Decrease distances 10% for each 9 knots headwind. For operation with tailwinds up to 10 knots, increase distances by 10%. for each 2 knots.
- 3. For operation on a dry, grass runway, increase distances by 40% of the "ground roll" figure.

	SPEED	PRESS		0°C		10 ⁰ C		20 ⁰ C		30°C		40 ⁰ С
LBS	AT 50 FT KIAS	ALT FT	GRND ROLL	TOTAL TO CLEAR 50 FT OBS		TOTAL TO CLEAR 50 FT OBS				TOTAL TO CLEAR 50 FT OBS		/TOTAL TO CLEAR 50 FT OBS
3100	63	S.L. 1000 2000 3000 4000 5000 6000 7000 8000	570 590 610 635 660 685 710 735 765	1270 1305 1335 1375 1415 1455 1500 1540 1585	590 610 635 660 685 710 735 765 795	1305 1335 1375 1415 1455 1495 1540 1585 1635	610 635 655 680 705 735 760 790 820	1335 1375 1410 1450 1490 1535 1580 1630 1675	630 655 680 705 730 760 790 820 850	1370 1410 1450 1530 1530 1580 1625 1675 1725	650 675 700 730 755 785 815 845 880	1400 1440 1530 1570 1620 1665 1715 1770

SECTION 5 PERFORMANCE

CESSNA MODEL R182

5-25/(5-26 blank)

SECTION 6 WEIGHT & BALANCE/ EQUIPMENT LIST

SECTION 6 WEIGHT & BALANCE/ EQUIPMENT LIST

TABLE OF CONTENTS

Page

Introduction														
Airplane Weighing Proce	du	res	, -					•	•		•	•	•	6-3
Weight And Balance					•	•								6-6
Baggage Tie-Down .														
Equipment List														

ţ

ĺ

ł

í

INTRODUCTION

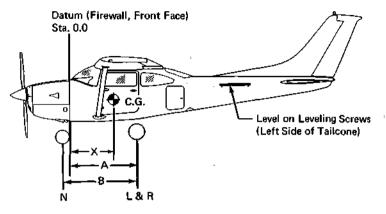
This section describes the procedure for establishing the basic empty weight and moment of the airplane. Sample forms are provided for reference. Procedures for calculating the weight and moment for various operations are also provided. A comprehensive list of all Cessna equipment available for this airplane is included at the back of this section.

It should be noted that specific information regarding the weight, arm, moment and installed equipment list for this airplane can only be found in the appropriate weight and balance records carried in the airplane.

It is the responsibility of the pilot to ensure that the airplane is loaded properly.

AIRPLANE WEIGHING PROCEDURES

- 1. Preparation:
 - a. Inflate tires to recommended operating pressures.
 - b. Remove the fuel tank sump quick-drain fittings and fuel selector valve drain plug to drain all fuel.
 - c. Remove oil sump drain plug to drain all oil.
 - d. Move sliding seats to the most forward position.
 - e. Raise flaps to the fully retracted position.
 - f. Place all control surfaces in neutral position.
- 2. Leveling:
 - a. Place scales under each wheel (minimum scale capacity, 1000 pounds).
 - b. Deflate the nose tire and/or lower or raise the nose strut to properly center the bubble in the level (see figure 6-1).
- 3. Weighing:
 - a. With the airplane level and brakes released, record the weight shown on each scale. Deduct the tare, if any, from each reading.
- 4. Measuring:
 - a. Obtain measurement A by measuring horizontally (along the airplane center line) from a line stretched between the main wheel centers to a plumb bob dropped from the firewall.
 - b. Obtain measurement B by measuring horizontally and parallel to the airplane center line, from center of nose wheel axle, left side, to a plumb bob dropped from the line between the main wheel centers. Repeat on right side and average the measurements.
- 5. Using weights from item 3 and measurements from item 4, the airplane weight and C.G. can be determined.
- 6. Basic Empty Weight may be determined by completing figure 6-1.


SECTION 6 WEIGHT & BALANCE/ EQUIPMENT LIST

CESSNA MODEL R182

ĺ

i٠

Ĺ

Scale Position	Scale Reading	Tare	Symbol	Net Weight
Left Wheel			L	
Right Wheel			R	
Nose Wheel			N	
Sum of Net Weights (A	s Weighed)		W	

$$X = ARM = (A) - (N) \times (B); X = () - () \times () = () IN.$$

W ()

ltem	Weight (Lbs.)	X C.G. Arm (In.)	Moment/1000 = (LbsIn.)
Airplane Weight (From Item 5, page 6-3)			-
Add Oil: (9 Qts at 7.5 Lbs/Gal)	17	-15.7	3
Add: Unusable Fuel (4 Gal at 6 Lbs/Gal)	24	48.0	1.2
Equipment Changes			
Airplane Basic Empty Weight			

Figure 6-1. Sample Airplane Weighing

SAMPLE WEIGHT AND BALANCE RECORD

(Continuous History of Changes in Structure or Equipment Affecting Weight and Balance)

		4 NO.		1	RUNNING BASIC								
DATE		/ NO.	DESCRIPTION		ADDED (+)			REMOVED (-)			EMPTY WEIGHT		
	In	Out	OF ARTICLE OR MODIFICATION	Wt, (Ib.)	Arm (In.)	Moment /1000	Wt. (lb.)	Arm (In.)	Moment /1000	Wt. (IБ.)	Moment /1000		
				<u> </u>	-	<u> </u>			┠				
			· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u>∤−</u>	┟───┤			<u> </u> -				
						<u> </u>							
			· · ·			┨┥				ļ	<u> </u>		
				<u>+</u> −−	<u>}-</u>	┟──┤			_				
- +						+ - +					<u> </u>		
				<u> </u>		<u>∤</u> ∔			ļ		 		
				<u> </u>	<u> </u>	<u></u>			<u> </u>		<u> </u>		
					<u> </u>	<u>↓</u> ↓					ļ		

1 October 1978

65

SECTION 6 WEIGHT & BALANCE/ EQUIPMENT LIST

CESSNA MODEL R182

WEIGHT AND BALANCE

The following information will enable you to operate your Cessna within the prescribed weight and center of gravity limitations. To figure weight and balance, use the Sample Problem, Loading Graph, and Center of Gravity Moment Envelope as follows:

Take the basic empty weight and moment from appropriate weight and balance records carried in your airplane, and enter them in the column titled YOUR AIRPLANE on the Sample Loading Problem.

NOTE

In addition to the basic empty weight and moment noted on these records, the C.G. arm (fuselage station) is also shown, but need not be used on the Sample Loading Problem. The moment which is shown must be divided by 1000 and this value used as the moment/1000 on the loading problem.

Use the Loading Graph to determine the moment/1000 for each additional item to be carried; then list these on the loading problem.

NOTE

Loading Graph information for the pilot, passengers and baggage is based on seats positioned for average occupants and baggage items loaded in the center of these areas as shown on the Loading Arrangements diagram. For loadings which may differ from these, the Sample Loading Problem lists fuselage stations for these items to indicate their forward and aft C.G. range limitation (seat travel and baggage area limitation). Additional moment calculations, based on the actual weight and C.G. arm (fuselage station) of the item being loaded, must be made if the position of the load is different from that shown on the Loading Graph.

Total the weights and moments/1000 and plot these values on the Center of Gravity Moment Envelope to determine whether the point falls within the envelope, and if the loading is acceptable.

BAGGAGE TIE-DOWN

A nylon baggage net having six tie-down straps is provided as standard equipment to secure baggage in the area aft of the rear seat (Baggage A) and over the wheel well (Baggage B). Eight eyebolts serve as

í

(

í,

SECTION 6 WEIGHT & BALANCE/ EQUIPMENT LIST

attaching points for the net. Two eyebolts for the forward tie-down straps are mounted on the cabin floor near each sidewall just forward of the baggage door approximately at station 92; two eyebolts are installed on the cabin floor slightly inboard of each sidewall just forward of the wheel well approximately at station 109; and two eyebolts are mounted on the upper forward surface of the wheel well slightly inboard of each sidewall approximately at station 109. The two aft eyebolts are installed above the aft portion of the wheel well and slightly inboard of each sidewall approximately at station 124.

When the cabin floor (Baggage A) only is utilized for baggage, the four eyebolts located on the cabin floor may be used, or the two forward eyebolts on the cabin floor and the two eyebolts on the upper forward surface of the wheel well may be used. When the upper surface of the wheel well (Baggage B) only contains baggage, the two eyebolts on the upper forward surface of the wheel well and the two aft eyebolts above the aft portion of the wheel well should be used. When there is baggage in both areas, the two forward eyebolts on the cabin floor, the two eyebolts on the upper forward surface of the wheel well, and the two aft eyebolts above the aft portion of the wheel well should be utilized.

LOADING ARRANGEMENTS

- * Pilot or passenger center of gravity on adjustable seats positioned for average occupant. Numbers in parenthesis indicate forward and aft limits of occupant center of gravity range.
- ** Baggage area center of gravity.
- NOTE: The aft baggage wall (approximate station 134) can be used as a convenient interior reference
 - point for determining the location of baggage area fuselage stations.

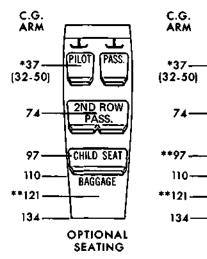
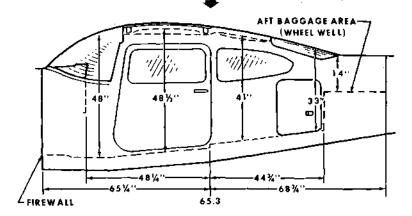


Figure 6-3. Loading Arrangements

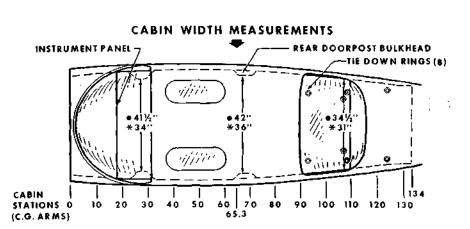
EQUIPMENT LIST


BAGGAGE B

STANDARD

SEATING

CESSNA MODEL R182


SECTION 6 WEIGHT & BALANCE/ EQUIPMENT LIST

CABIN HEIGHT MEASUREMENTS

DOOR OPENING DIMENSIONS

	WIDTH (TOP)	WIDTH (BOTTOM)	HEIGHT (FRONT)	HEIGHT (REAR)	• LWR WINDOW
CABIN DOOR	32"	36岁"	41''	36½"	LINE
BAGGAGE DOOR	15¾"	15奖"	22''	20½"	* <u>CABIN FLOOR</u>

Figure 6-4. Internal Cabin Dimensions

	SAMPLE	SAMPLE	AIRPLANE	YOUR /	AIRPLANE
	LOADING PROBLEM	Weight (Ibs.)	Moment (Ibins. /1000)	Weight (Ibs.)	Moment (Ibins. /1000)
1.	Basic Empty Weight (Use the data pertaining to your airplane as it is presently equipped. Includes unusable fuel and full oil)	1808	62.0	1891	63.5 34:6
2.	Usable Fuel (At 6 Lbs./Gal.)				
	Standard Tanks (88 Gal. Maximum)	528	24.6	270	13.0
	Reduced Fuel (65 Gal.)				
3.	Pilot and Front Passenger (Sta. 32 to 50)	340	12.6	450	17.5
4.	Second Row Passengers	340	25.2	270	195
5.	Baggage (Area "A") or Passenger on Child's ' Seat (Station 82 to 110) 120 Lbs. Maximum	96	9.3	30	2.5
6.	Baggage - Aft (Area "B") (Station 110 to 134) 80 Lbs. Maximum)	1.8.0
7.	RAMP WEIGHT AND MOMENT	3112	133.7	2911	\$7.70
8.	Fuel allowance for engine start, taxi and runup	-12	6		5.1
9.	TAKEOFF WEIGHT AND MOMENT (Subtract step 8 from step 7)	3100	133.1		
10.	Locate this point (3100 at 133.1) on the Center of Gravity Morr and since this point falls within the envelope, the loading is acce		,		·

SECTION 6 WEIGHT & BALANCE/ EQUIPMENT LIST .

CESSNA MODEL R182

 $\overline{\cdot}$

_

Figure 6-5. Sample Loading Problem

~-~

1 October 1978

October 1978

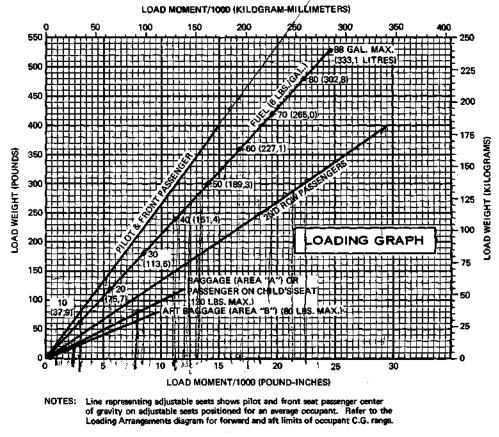
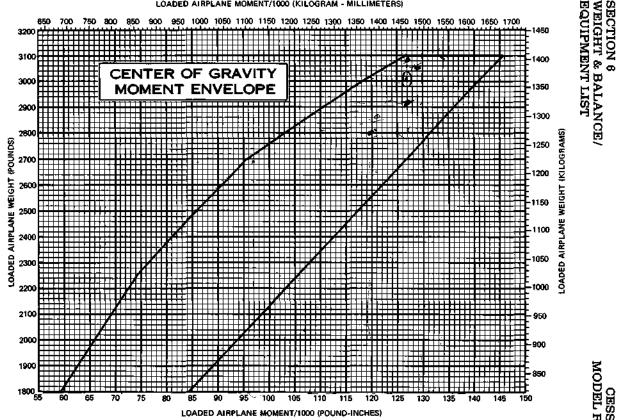


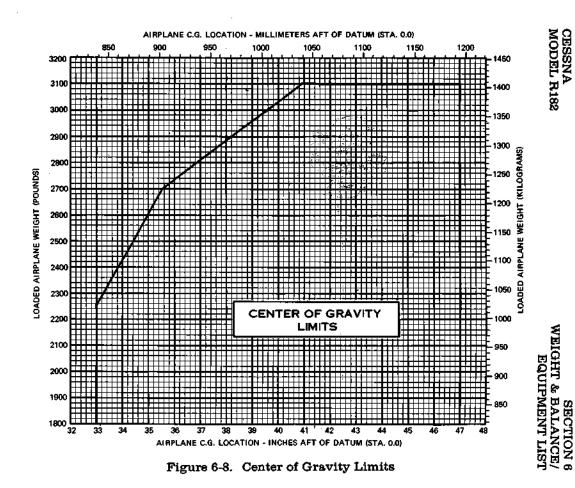
Figure 6-6. Loading Graph


WEIGHT & GHT & BALAI EQUIPMENT

Ē

С ы

MODEL R182 CESSNA



October 1978

5

SECTION 6 WEIGHT & BALANCE/ EQUIPMENT LIST

EQUIPMENT LIST

The following equipment list is a comprehensive list of all Cessna equipment available for this airplane. A separate equipment list of items installed in your specific airplane is provided in your aircraft file. The following list and the specific list for your airplane have a similar order of listing.

This equipment list provides the following information:

An **item number** gives the identification number for the item. Each number is prefixed with a letter which identifies the **descriptive** grouping (example: A. Powerplant & Accessories) under which it is listed. Suffix letters identify the equipment as a required item, a standard item or an optional item. Suffix letters are as follows:

- -R = required items of equipment for FAA certification
- -S = standard equipment items
- O= optional equipment items replacing required or standard items
- A = optional equipment items which are in addition to required or standard items

A reference drawing column provides the drawing number for the item.

NOTE

If additional equipment is to be installed, it must be done in accordance with the reference drawing, accessory kit instructions, or a separate FAA approval.

Columns showing weight (in pounds) and arm (in inches) provide the weight and center of gravity location for the equipment.

NOTE

Unless otherwise indicated, true values (not net change values) for the weight and arm are shown. Positive arms are distances aft of the airplane datum; negative arms are distances forward of the datum.

NOTE

Asterisks (*) after the item weight and arm indicate complete assembly installations. Some major components of the assembly are listed on the lines immediately following. The summation of these major components does not necessarily equal the complete assembly installation.

Weight and Balance Report

AEROMECHANIX KMYF

Make	CESSNA	Model	R182
Serial#	R18201133	Reg.#	N756RA
Date of s	cale calibration:		2021
Aircraft	gross weight:		3,100.00

		Aircr	aft as Weighed		
Weight Point	Scale Reading	Tare	Net Weight	Arm	Moment
Left	850.00	0.00	850.00	58.00	49,300.00
Right	860.00	0.00	860.00	58.00	49,880.00
Nose	729.00	0.00	729.00	-7.20	-5,248.80
Total As Weighed	1		2,439.00	38.51	93,931.20

	Weight Adjustments		
Description	Weight	Arm	Moment
USABLE FUEL	-528.00	46.50	-24,552.00
Total Corrected Empty Weight	1,911.00	36.31	69,379.20

CENTER OF GRAVITY LIMITS: FWD 33.0 @ 2250 LBS OR LESS, FWD 35.5 @ 2700 LBS, FWD 40.9 @ 3100 LB! AFT 47.0 @ ALL WEIGHTS. IT IS THE RESPONSABILITY OF THE PILOT TO ENSURE THAT THE AIRPLANE IS LOADED PROPERLY

Corrected Empty Weight: 1	,911.00
---------------------------	---------

Center of Gravity:	36.31
Useful Load:	1,189

			Useful Load:	1,189
Att :.	ALAN HERNANDEZ	A&P MECHANIC FOR AEROMECHANIX	3867341	4/16/2021
Authorized S	Signature	Title	Cert. Number	Date

ITEM NO	EQUIPMENT LIST DESCRIPTION	REF DRAWING	WT LBS	ARM INS
	A. POWERPLANT & ACCESSORIES			
40 1- 8	ENGINE LYCOMING 0-54C-J3C50 ENPL 2524 BENDIX MAGNETO (IMPULSE COUPLING) CARBURETOR, MARVEL SCHEBLER STARTER, PRESTOLITE 24 VOLT SPARK PLUGS (SHIELDED) FUEL PUMP CUTTE ASCENDIX CASHERTOR	2250000 DGLN-2031 TYPE HA-6 MHB 4010	389.0* 11.5 5.1 18.0 2.6 1.7	-23.0* -6.5 -5.0 -33.0
405-R 409-R 417-S 422-S 433-R 437-R 437-R	FUEL PUMP FILTER ASSEMBLY, CARBURE TOR ALTERNATOR, 28 VJLT, 60 AMP OIL COOLER, REMOTE OIL FILTER, SPIN-UN PROPELLER MCCAULEY (B2D34C214/90DHB+8) GOVERNOR, PROPELLER (MCCAULEY D290-D3/T14) SPINNER IN STALLATION, PROPELLER SPINNER DOME ASSY AFT BULKHEAD ASSY VACUUM SYSTEM, ENGINE DRIVEN VACUUM PIMP	$\begin{array}{c} C294510-0901\\ C611503-0102\\ 10610A\\ C294506-0102\\ C161008-0107\\ C161008-0107\\ C161031-0109\\ 2250003\\ 0752637-16\\ 1750051-1\\ 0706003-2\\ 010003-2\\ 010003-2\\ 010003-2\\ 010003-2\\ 0100000000000000000000000000000000000$	0.8 10.7 3.3 1.1 53.0 3.0	-6.5 -4.6 -34.6 -7.5 -7.5 -41.6 -42.0*
A61-5	AFT BULKHEAD ASSY AFT BULKHEAD ASSY VACUUM SYSTEM, ENGINE DRIVEN VACUUM PUMP Filtter Assembly	0752637-16 1750051-1 0706003-2 6431003-0101 1201075-2	2-1 1-1* 1-3 1-3 0-7 0-2	-42.04 -46.5 -37.68 -7.5 11.5 -10.0 -19.0
A70-5 A73-5	PRIMING SYS. 4-CYL. DIL QUICK DRAIN VALVE	S-1951-5	0.7	-10.0 -19.0
	B. LANDING GEAR & ACCESSORIES			
8J1-R	WHEEL & TIRE ASSY., BRAKE ASSY MAIN (2) WHEEL & TIRE ASSY (EACH SIDE) WHEEL ASSY. MCCAULEY TIRE 6.COX6 6-PLY TUBE BRAKE ASSYRH	C163019 B) 208 C163014 B0 208 C163006 - 0103 C262006 - 0101 C262026 - 0101	35.4* 14.2 6.2 3.1 9.3*	57.5* 58.0*
804-R-1	WHEEL & TIRE ASSY, 5.COX5 NOSE WHEEL ASSY, CLEVELAND 40-77 TIRE, 6 PLY BATED BLACKWALL	C163032-0206 C163032-0206 C163032-0205 1241156-104 1241156-104 C262003-0202 C262003-0202 C262023-0101 C163018 B0103	5.0	55.0 55.0 -7.2 -7.2 -7.2 -7.2 -7.2
804-R-2	TÜBE TIRE ASSY, SOCX5 NOSE GEAR Wheel & Sig Tire, 6 ply rated blackwall	C262023-0101 C16301880103 C163005-0201 C262003-0202	1.2 10.0* 3.6 5.3	-7.2 -7.2 -7.2 -7.2

 \sim

~

 \sim

 $\overline{}$

 \sim

6-16

1 October 1978

÷

:

- -

1.00

ITEM NO	EQUIPMENT LIST DESCRIPTION	REF DRAWING	WT LBS	ARM INS
504-R-3	TUBE WHEEL & TIRE ASSY, 5CCX5 NOSE GEAR Wheel ASSY TIRE, 6 PLY RATED BLACKWALL TUBE AXLE, STANDARD DUTY MAIN GEAR (SET OF 2)	C262023-0101 C16301880108 4163005-0201 C262003-0212 4262023-0101 0541124-1	1.1 10.0 3.6 5.3 1.1 1.9	-7-22 -7-22 -7-22 -7-22 58-0
816-R	C. ELECTRICAL SYSTEMS	0541124-1	1.9	58.0
C01-R-1 C01-8-2 C01-0 C04-8		Có 1400 1 ~0 10 5 Có 1400 2 ~0 10 1 Có 1400 1 ~0 10 6 Có 1400 1 ~0 10 6 Có 1400 5 ~0 10 1	22.8 23.2 24.8 0.4	-4.5 -4.5 -4.5 -0.3
C07-A C10-A C19-0	GROUND SERVICE PLUG RECEPTACLE ELECTRIC ELEVATOR TRIM INSTL CRIVE ASSY VOLTAGE REGULATOR ACTUATOR ASSY (EXCHANGE) FEATING SYSTEM, PITOT & STALL WARNING	2270003-1 2270007-1 1260153-3 C611003-0101 1260074-7 0770724-3	3 • 1 4 • 1* 3 • 3 NEG 0 • 5	-2.5 217.7* 221.0 216.0
C 22-A C 23-A C 25-A	SWITCH LIGHTS, INSTRUMENT POST LIGHTS, PANEL ELECTRO-LUMINESCENT MAP LIGHT, CONTROL WHEEL HOLNTED (REQUIRES EA9-0 CHANGE EROM 1260243-2 TO		0.5 2.1 0.2	26.5 17.5 16.5 22.5
C31-A C34-S C40-A C43-A	1260243-5) LIGHTS, COURTESY (NET CHANGE) FUEL PUMP AUX. DETECTORS, NAVIGATION LIGHT (SET GF 2) OMNI FLASHING BEACON LIGHT LIGHT ASSY (IN FIN TIP) FLASHER ASSY (IN FIN TIP) LOADING RESISTOR STROBE LIGHTS INSTL. (NET CHANGE) POWER SUPPLY INSTL OPT WING TIPS(C723200-26,-27) REPLACES STD TIPS(C7232C0-26,-27) REPLACES STD TIPS(C723CC-14,-15) WHICH INCLUDES LIGHT ASY (SET OF TWO)		0.5 1.8 NEGL 1.8* 0.4	61.7 -1.2 208.6* 253.0 253.0
C46-A	LOADING RESISTOR STROBE LIGHTS INSTL. (NET CHANGE) POWER SUPPLY INSTL. OPT WING TIPS(C723200-26,-27) REPLACES	0895-6 2201008-2 0701018-5 & -6	0 • 2 3 • 5* 3 • 4	212.0 44.4* 44.4
C49-S	INCLUDES LIGHT ASY (SET OF TWO) POWER UNIT LIGHT INSTL, COWL MOUNTED LANDING & TAXI	C622006-0107 C622308-3102 2270002	0.4 2.4 1.6*	42.0 46.7 -28.1

_

 \sim

6-17

CESSNA MODEL R182

10.20

 \sim

SECTION 6 WEIGHT & BALANCE/ EQUIPMENT LIST

TEM NO	EQUIPMENT LIST DESCRIPTION	REF DRAWING	WTLBS	ARM INS
	LIGHT BULES (SET CF 2)	GE-4591	1.0	-37.0
001-9 001-0 004-A 007-R		C661064-0223 1201108-15 0701028-1 C661071-0101	0.6 0.2 0.3 1.0	16.0 16.5 14.4 15.3 15.3
007-0-1 007-0-2 010-4-1 016-4-1	INDICATOR, AIR SPEED INDICATOR, TRUE AIR SPEED (NET CHANGE) STATIC ALTERNATE AIR SOURCE ALTIMETER, SENSITIVE (FEET 6 MILLIBARS) ALTIMETER, SENSITIVE (20 FT. MARKINGS) ALTIMETER, INSTL. SECOND UNIT ENCODING ALTIMETER INCHES HG. (REQUIRES RELOCATING STD. ALTIMETER) ENCODING ALTIMETER, FEET AND MILLIBARS (REQUIRES RELOCATING STANDARD TYPE ALTIMETER) ALTIMETER) ALTIMETER) ALTIMETER) ALTIMETER)	C66 1071-0101 C66 1071-0102 C66 1075-0102 1213681-1 1213732 1213732		16-0
016-A-3 022-4 025-5 025-6 025-0 025-8	ALTIMETER RELOCATING STANDARD TYPE ALTIMETER) ALTIMETER) ALTITUDE ENCODER (BLIND) GAGE, CARBURETOR AIR TEMPERATURE ELECTRIC CLOCK ELECTRIC CLOCK, DIGITAL READOLT CUMPASS, MAGNETIC & POUNT INSTRUMENT CLUSTER, ENGINE & FUEL INDICATOR INSTALLATION, ECONOMY MIXTURE	1213732 0701099-5 2201005-1 C664508-0102 C664511-0101	3.0 1.5 1.2 0.4	14-0 13-6 15-3 16-6
128-R 034-R 049-A	CUMPASS, MAGNETIC & FOUNT INSTRUMENT CLUSTER, ENGINE & FUEL INDICATOR INSTALLATION, ECONOMY MIXTURE EGT INDICATOR THERMOCOUPLE PROBE THERMOCOUPLE PROBE	1213679-3 C669545-0102 0750609-3 C668501-0211 C668501-0204	0-4 1-1 1-3 0-7* 0-4 0-1 0-1	10.6 16.6 20.5 16.5 8.2* 17.1 -20.5 -0.3 13.7*
064-S 064-0-1	INDICATOR INSTALLATION, ECONOMY MIXTORE EGT INDICATOR THERMOCOUPLE PROBE THERMOCOUPLE LEAD WIRE (IC) GYRO SYSTEM INSTL. (NON AUTO-PILOT) DIRECTIONAL INDICATOR ATTITUDE INDICATOR HOSES, FITTINGS, SCREWS, CLAMPS ETC. GYRO SYSTEM INSTL. FOR NAV-O-MATIC 300A	C668501-0206 0701030-2 C661075-0101 C661076-0102 0701038-1	6-4* 2-9 2-2 1-3 6.7*	13.7* 14.0 14.6 11.5 13.4*
064-0-2 067-A	GYRO SYSTEM INSTL. FOR NAV-G-MATIC 300A AUTOPILOT DIRECTIONAL INDICATOR ATTITUDE INDICATOR GYRO INSTL FOR USE WITH HSI REQUIRES H09-A HOURMETER, INSTALLATION RECORDING INDICATOR OIL PRESSURE SWITCH GAGE, MANIFOLD PRESSLRE GAGE, OUTSIDE AIR TEMPERATURE	40760 C661076 1201126 2201004-1 C664503-0101	3+2 2+5 0+6* 0+2	13.0 14.6 13.4 7.8*
073-9 082-5	OTL PRÉSSURE SWITCH GAGE, MANIFOLD PRESSURE GAGE, OUTSIDE AIR TEMPERATURE	\$1711-1 C662035-0101 C668507-0101	0.2 0.9 0.1	-1.0 15-8 28-5

--

6-18

;

1 October 1978

--

ITEM NO	EQUIPMENT LIST DESCRIPTION	REF DRAWING	WT LBS	ARM INS
D85-P D88-S-1 D88-S-2 D88-D-1 D91-S	TACHOMETER INSTALLATION, ENGINE RECORDING TACH INDICATOR INDICATOR, TURN COURDINATOR (28 VELT ENLY) INDICATOR, TURN COURDINATOR (10-30 VELT) INDICATOR, TURN COURDINATOR (FOR N.O.M.'S) INDICATOR, RATE OF CLIMB	2206001 C668020-0117 C661003-0505 C661003-0506 42320-0028 C661080-0101	0.9* 1.3 1.3 1.0	13.8* 16.9 15.0 15.0 15.0 15.0
	E. CABIN ACCOMMODATIONS			
805-8 805-0 807-5 807-0 807-0 807-0 807-0 807-5 807-5 811-4	SEAT, ADJUSTABLE FORE & AFT - PILOT SEAT, ARTICULATING VERT, ADJ PILOT SEAT, ADJUSTABLE FORE & AFT - CO-PILCT SEAT, ATTICULATING VERT, ADJ CO-PILOT SEAT, 2ND ROW BENCH SEAT INSTALLATION, CHILD S SEAT ASSY, FOLDAWAY 1120 LBS MAX CAP.)	1214124-13 1214124-16 1214124-13 1214124-17 2214124-17 2214304-15 2201001	13.0 24.0 13.0 24.0 23.0 8.4 6.9	44.0 41.5 44.0 41.5 803.5 103.5* 104.4
515-8 515-8 619-0	BELT ASSY, LAP BELT ASSY, LAP BELT ASSY, LAP SHOULDER HARNESS ASSY, PILOT IN ERTIA REEL INSTL., PILOT & CO-PILOT (NET: CHANGE)	\$1746-5 \$2275-103 \$2275-201 0701077-1	0.9 1.0 0.6 3.6	104.4 101.1 37.0 37.0 92.0
523-5 527-5 527-0		52275-3 51746-40 & -41 0701026-1	1.6 1.6 1.8	37.0 74.5 74.5
835-4-1 835-4-3 8355-0 8355-0 8357-0 8357-0 8835-0 8845-0 8855-0 89555-0 80550-0 8055-0 8055-0 8055-0 8055-0 8055-0 8055-	HELT & SHUDLDER HARNESS ASSY, CU-PILLT BELT ASSY, 2ND R OF CUPANTS (SET OF 2) SHOULDER HARNESS INSIL, REAR (EXCHANGE) (S2275-7 HARNESS REPLACES STANDART BELTS SEE E27-S FOR STO. BELTS) IN TERIOR, VINYL SEAT COVERS (NET CHANGE) IN TERIOR, LEATHER SEAT COVERS (NET CHANGE) SEAT COVERING-LEATHER & FABRIC OPENABLE RH CABIN DOCR WINDOW (NET CHANGE) WINDOWS, OVERHEAD CABIN TOP (NET CHANGE) WINDOWS, OVERHEAD CABIN TOP (NET CHANGE) WENTLATION SYSTEM, 2ND ROW SEATING OXYGEN SYSTEM, INCLUDES MASKS CYUNDER & RESULATOR, EMPTY OXYGEN - 48 CU FI & 1800 PSI	CES-1249 CES-1249 CFS-1249 0701065-8 0701017-4 0701084-1 2201006-1 C166001-0601	0 -00 -03 -03 -03 -03 -03 -04 -00 -00 -00 -00 -00 -00 -00 -00 -00	62.3 62.3 47.05 45.53 143.6 143.6
E49-4 E50-4 E51-A E51-S	UXYGEN MASKS - PILOT & 3 PASSENGERS CUP HOLDER, RETRACIABLE (SET OF 2) HEADREST, IST ROW (INSTALLED ARM) (EACH) HEADREST, 2ND ROW (INSTALLED ARM) (EACH) SUN VISORS (SET OF 2)	1201124-2 & -3 1215073-1 1215073-1 0701024-1	1.1 0.1 0.9 0.9 1.0	61.1 16.0 47.0 87.0 33.0

 \sim

-

 \sim

. —.

. — ..

SECTION 6 WEIGHT & BALANCE/ EQUIPMENT LIST

CESSNA MODEL R182

 \sim

EQUIPMENT LIST DESCRIPTION ITEM NO **REF DRAWING** WT LBS ARM INS APPROACH PLATE HOLDER BAGGAGE TIE DOWN NEI CONTROLS INSTALLATION, DUAL (CO-PILCT) CONTROL WHEEL -ALL PURPOSE (EXCHANC PILOT ONLY, INCLUDES MIC SWITCH AND PANEL MOUNTED AUX MIC JACK WITH WIRI HEATING SYSTEM, CABIN & CARBURETCR AIR 59-A 565-S 595-A 1515151 1215042-1 0760101-4 1260243-2 0.1 0.5 6.7 0.2 122.0 14.1 289-0 (EXCHANGE) WIRING) E93-R 13.5 -4.8 F. PLACARDS, WARNINGS & MANUALS F01-8 PLACARD, OPERATIONAL LIMITATIONS-VER DAY PLACARD, OPERATIONAL LIMITATIONS-VER DAY-0505087-7 NEGL -F01-0-1 0505087-8 NĒĞĒ NIGHT F01-0-2 PLACARD, OPERATIONAL LIMITATIONS-IFR DAY-NIGHT 0505087-9 NEGL INDICATOR, STALL WARNING LNIT (USES RADIO SPEAKER FOR AUDIBLE TONES) CHECKLIST, PILOT'S FJ4-3 1270733-1 0.3 45.0 F10-S D6032 NEGL PILOT'S OPERATING HANDBOCK AND FAA APPROVED AIRPLANE FLIGHT MANUAL, STOWED F16-R D1142-13PH 1.3 AUXILIARY EQUIPMENT G. TAILCONE LIFT HANDLES (SET OF 2) HOISTING RINGS (DEALER INSTALLED) FUEL SAMPLER CUP (STCKED ITEM) CORPOSION PROOFING, INTERNAL STATIC DISCHARGERS (SET OF 10) STABILIZER A984 SICN BEDIS TOWBAR, AIRCRAFT (STOWED ARM SHOWN) PAINT, UVERALL COVER-EXTERICR OVERALL WHITE BASE (102773 SQ IN) COLORED STRIPE JACK PADS (UNDERSIDE OF WING)(SET OF 2) IN STALLED ARM SHOWN (NORMALLY STOWED) CABLES, CORROSION RESISTANT (NET CHANGE) FIRE_EXTINGUISHER, MAND TYPE (FOR USE WI GO 1-4 GO 7-4 2201009 07006<u>1</u>2-1 1.0 186.5 Ğ10-S 0.1 7.1 0.4 2.7 1.6 13.0* S-2107-1 0750007-2 - -Ğ13-A 70.0 Ğ16-A G19-A G22-S G25-S 1201131-1 130.5 206.0 97.0 91.9* 0500041-2 0501019-1 2204002 12.1 91.5 82.1 G28-S 1200031 2.0 G31-A (NET CHANGE) 0760007-2 0.0 655-4-1 FIRE EXTINGUISHER, HAND TYPE (FOR USE WITH STANDARD FILOT SEAT) 0701014-1 35.0

-

CESSNA MODEL R182

÷

SECTION 6 WEIGHT & BALAN EQUIPMENT LIST

BALANCE/

ሮ 8

1 October 1978

EQUIPMENT LIST DESCRIPTION ITEM NO **REF DRAWING** FIRE EXTINGUISHER, HAND TYPE (FOR USE WITH VERTICAL ADJUSTING PILOT SEAT) RUDDER PEDAL EXTENSIONS (DEALER INSTL.) WINTER IZATION KIT, ENGINE G55-A-2 0701014-2 G67-A 0701048-1 G89-A 2201002-1 AVIONICS & ALTOPILOTS н., CESSNA 300 ADF WITH BFD RECEIVER P-546E INDICATOR (IN-346A) LOOP ANTENNA RECEIVER MOUNT SENSE ANTENNA CESSNA 400 ADF WITH BFD ADF RECEIVER WITH BFD (R-446A) GON IOMETER INDICATOR (IN-346A) ADF LOOP ANTENNA ADF SENSE ANTENNA MOUNT & INSTL ITEMS DME INSTL NARCO DME 190 TRANSCEIVER & MOUNT ANTENNA INSTL WIRING & MISC CESSNA 400 DME INSTL RECEIVER TRANSMITTER MOUNT ANTENNA INSTL H01-4-1 3910159-20 41240-0101 40980-1001 40980-1031 40900-0030 0770750-608 3910160 43090-1128 40980-1031 41000-1300 0770753 H01-A-2 3910166-11 51-03312-403 3960133 3950136 3910167-18 44000 H04-4-1 H04-A-2 44088 ANTENNA INSTL 3960134-1 CONTROL UNIT 44020-1100 41038-0000 3950136 MOUNT WIRING CESSNA 400 R-NAV INSTL. COMPUTER (R-478A) MOUNT 3910168 3910168 44100-1100 44091-0000 3930176-16 3950136 3950136 3950138 H05-A-1 PHOTOCELL INSTALLATION REPLACES REGULAR 300 CR 400 IND. CARLE INSTALLATION FOSTER R-NAV INSTALLATION (W/CESSNA 400 CR NARCO 190 DME H05-A-2. R-NAV RECEIVER-INDICATCR (511 CESSNA 400 GLIDESLOPE H07-A 3910157-11

CESSNA MODEL R182

ARM INS

29.0

-40.0

7.0

22.0* 13.0 15.0

40.9 13.0 96.2 22.0* 13.0 15.0

40.9 96.2 17.0 21.0* 11.0

188.0 59.2 104.4* 133.8

133.8

188.0 14.0 17.5 53.0

11.6* 12.5 12.5 18.0

10.0 10.0 12.2*

12.5 88.9* SECTION 6 WEIGHT & BALANCE/ EQUIPMENT LIST

6-21

October 1978

÷

WT LBS

3.5

2.3

ō.3∗

0.4

2.4

4.6*

3.4*

ITEM NO	EQUIPMENT LIST DESCRIPTION	REF DRAWING	WT LBS	ARM INS
	RECEIVER R-443B MOUNT VOR/ILS INDICATOR IN-386A (EXCHANGE (ACTUAL WT IS 1.7 LB ANTENNA INSTL (MGUNTED ON WINDSHIELD)	42100-0000 36450-0000 46860-2000	2.1 0.3 0.1	132.4 132.4 15.5
109-A	ANTÉNŇA ÍŇSTĹ (MGĽŇŤEĎ ON WINDSHIELD) WIRING HSI SYŠTĚM INSTALLATICN, UNSLAVED FSI INSTL. INDICATOR MOUNT VODE COLVERTER INST.	3960119-4 3950136 3910195-5 3930195-1 44690-2030 41038-2000	0455403492	29.6 44.0 44.4* 14.0
111-A-1	VOR FLUC CONVERTER INSTL. CONVERTER MOUNT WIRING REGULAR NAV INDICATOR REPLACED PANTRONICS HE TRANSCELVER	3940252-1 47240-0000 43270-0000 3950136 3910193-8	1.1 0.9 0.2 1.2 -1.7 19.3*	132-1 55-0 15-5 103-6
	POWER SUPPLY, PANTRUNICS PILO-A POWER SUPPLY, PANTRONICS PT-PS10-28 ANTENNA LOAD 30X PANTRONICS DX-10RL-28 LOAD BOX SUPPORT ASSEMBLIES ANTENNA INSTL. WIRING	C582103-0102 C582103-0301 C589502-0201 2270006-1,-2 3960117-1 3950136	3.8 8.4 0.3 0.3 2.2	14.0 132.0 144.5 144.5 152.1 62.1
H11-A-2	IACTUAL WT IS 1.7 LB ANTENNA INSTL (MGUNTED ON WINDSHIELD) WIRING HSI SYSTEM INSTALLATION, UNSLAVED FSI INSTL. INDICATOR MOUNT VOR ALOC CONVERTER INSTL. CONVERTER MOUNT WIRING REGULAR NAV INDICATOR REPLACED PANIFONICS HF TRANSCEIVER TPANSCEIVER, PANTRONICS PTIO-A POWER SUPPLY, PANTRONICS DX-10RL-28 LOAD BOX SUPPORT ASSEMBLIES ANTENNA LOAD JOX PANTRONICS DX-10RL-28 LOAD BOX SUPPORT ASSEMBLIES ANTENNA INSTL. WIRING SUNATE ASB-125 SINGLE-SIDE BAND HF XCVR TRANSCEIVER A SB-125 POWER SUPPLY MOUNT ANTENNA COUPLER CL-110 ANTENNA INSTL WIRING CESSNA 400 MARKER BEACON RECEIVER (R-402A) ANTENNA INSTL CONTROL PANEL INSTL (THESE PARTS INSTALLED IN AUDIC PNL) WIRING CESSNA 300 TRANSOCNDER	3910158-19 99681 99683 99916 99816 2270006-1,-2 3960117-1	01-19-384-22432*********************************	5,56,00 5,56,00 5,57,00 1,142,4,57 1,142,4,57 1,144,422,187,00 1,144,422,187,00 1,144,422,187,00 1,144,20,00 1,144,20,00 1,144,20,00 1,144,20,00 1,144,20,00 1,144,20,00 1,144,20,00 1,144,20,00 1,144,20,00 1,144,20,00 1,144,20,00 1,144,20,00 1,144,20,00 1,144,420,00 1,144,44,20,00 1,144,14,14,14,14,14,14,14,14,14,14,14,1
H13-A	WIRING CESSNA 400 MARKER BEACON RECEIVER (R-402A) ANTENNA INSTL. CONTROL PANEL INSTL. (THESE PARIS INSTALLED IN AUDIC PAL)	3950136 3910164-12 42410-5114 3960126-1 3930187-1	2.8 2.7# 0.7 1.0 0.4	50.7 70.8 12.0 134.0 17.5
H16-A-1	WIRING CFSSNA 300 TRANSPENDER TRANSCEIVER INSTL TRANSCEIVER (RT-359A) MOUNT & SUPPORTS ANTENNA INSTL WIRING	3950136 3910127-28 3930132-15 41420-1128 3960136-1	0.6 4.2* 3.1 2.7 0.2 0.2	66.8 17.4* 12.4 12.5 11.4 58.8 24.8

~~

~

--

6-22

1 October 1978

ITEM NO	EQUIPMENT LIST DESCRIPTION	REF DRAWING	WT LBS	ARM INS	MODEL
H16-A-2	CESSNA 400 TRANSPUNDER (SAME AS ITEM HIG-A-I EXCEPT 3930132-14 PT-6504 YOUR INSTA	3910128-25	4•2*	17.6*	MODEL R182
H22-A-1	3930132-16 RT-459A XCYR INSTL REPLACES 3930132-15, NEG. WT. CHANGE) FIRST 300 NAV/COM, 72C CHANNEL COM VCR/LOC REQUIRES H34~A BASIC AVIONICS KIT TO BE OPERATIONAL AS A FIRST UNIT RECEIVER-TRANSMITTER (RT-385A)	3910183	7.7*	13.0*	88
H22-4-2	RECEIVER-TRANSMITTER (RT-385A) VOR/LOC INDICATOR (IN-385A) MOUNT, WIRING 6 MISC. HARDWARE FIRST 300 NAV/COM WITH OPTIONAL INDICATOR IN-385AC (AUTOMATIC RADIAL CENTERING) EXCHANGE FOR REGULAR LOG OR ILS IND. WIT. NET CHANGE (FESSNA 300 NAV/COM 320 CHAN COM WOR/LOC	46660-1100 46860-1000	5.5 1.6 0.6 0.2	12.5 15.5 10.8 15.5	
H22-A-3	WT. NET CHANGE CESSNA 300 NAV/COM,720 CHAN. CGM.VCP/LOC REQUIRES BASIC AVIGNICS KIT SIMILAR TO H34-A TO BE OPERATIONAL DECENTE TO BE OPERATIONAL		9.9*	10.2*	
	VOR/LOC INDICATOR (IN 5148) MOUNT, WIRING & MISC. HARDWARE	43340-1124 45010-1000 41010	6.9 9.6 1.2 1.2 10.0*	11.0 16.3 11.8 1.0	
H22-A-4	REQUIRES BASIC AVIONICS KIT SIMILAR TO	41010 3910152-11 43340-1124		10.3*	
H25-4-1	RECEIVER-TRANSMITTER (RT-32BT) VOR/ILS INDICATOR (IN 525B) MOUNT, WIRING & MISC. HARDWARE VOLTAGE CONVERTER SECOND 300 NAV/COM, 720 CHAN, COM VCR/LCC REQUIRES H37-4, SECOND NAV/COM INSTL ITEMS TO BE OPERATIONAL RECEIVER-TRANSCEIVER (RT-385A) VOR/LOC INDICATOR (IN-385A)	45010-2000 41010	6.9 0.7 1.2 1.2 7.5*	11.0 16.3 11.8 1.0 13.1*	N N
H25-A-2	ITENS TO BE OPERATIONAL RECEIVER-TRANSCEIVER (RT-385A) VOR/LOC INDICATOR (IN-385A) MOUNT-XCVR CESSNA 300 NAV/COM 726 CHNL CCM, VOR/LGC	46660-1100 46860-1000 47053-0000	5.5 1.6 0.4 9.9*	12.5 15.5 12.5 10.2*	WEIGHT EQU
	SECOND UNIT INSTLEXPORT CNLY REQUIRES H37-A TO BE OPERATIONAL RECEIVER-TRANSCEIVER (RT-3287) VOP (100 INDICATOR (IN-5148)	43340-1124 45010-1000	6.9 0.6	11.0 16.3	IGHT & BALANCE/ EQUIPMENT LIST
H23-A-1	VOLTAGE CONVERTER MOUNT, MIRING & MISC ITEMS EMERGENCY LOCATOR TRANSMITTER	41010 47053-3000 0470419-23	1.2 1.2 3.5*	1.0 11.8 134.6*	

-

~

1.1

1 October 1978

_

6-23

6-24

ITEM NO	EQUIPMENT LIST DESCRIPTION	REF DRAWING	WT LBS	ARM INS
	TRANSMITTER ASSY (D & M DMELT-C-1) Antenna	C589511-0117 C589511-0109	3.3	134-5
28-A-2	EMERGENCY LOCATOR TRANSMITTER LUSED IN CANADA	0470419-24	3₊5¥	134.6*
31-4-1	TRANSMITTER ASSY (D & N DMELT-6-1C) ANTENNA NAMENATER 2000 INSTRUCT THEN (45 2000)	C589511-0113 C589511-0109	3.3 0.1 8.2*	134.5
	CONTROLLER-AMPLIFIER	3910162-24 43610-1201 42320-0028	8.2* 1.1 NEG	58.9* 15.0
31-4-2	WING SERVO INSTALLATION NAV-D-MATIC 300A INSTALLATION (AF-395-A)	0700215	6.3 10.5*	71.0
	CONTROLLER-AMPLIFIER (C-395A) GYRO_INSTALLATION_(NET_CHANGE)	42660-1201 0701038-1	1.8	15.0
	WING SER VO INSTALLATION (AF-395-A) (NAV-O-MATIC 300A INSTALLATION (AF-395-A) CONTROLLER-AMPLIFIER (C-395A) GYRO INSTALLATION (NET CHANGE) (ITEM D64-0-1 REPLACES ITEM D64-S) TURN COORDINATOR (D88-0-1) (NET CHANGE) WING SER VO INSTALLATION	42320-0028	NEG	
31-A-3	WING SER VO IN STALLATION NAV-O-MATIC 300A IN STALLATION WITH NON SLAVED HSI	0700215-4	6.3 11.8*	71.0 60.2*
	CONTROL I SREAMPLITETER	42660-2201	1.8	15.0 13.4
	D64-A-2 GYRD INSTALLATION H09-A NON-SLAVED HSI SYSTEM D86-D-1 TURN COORDINATORNET CHANGE	42320-0028	1.8 3.5 5.8 0.0	44-4
	D64-S GYROTS DELETED MISC ITEMS & HARD&ARE	0700215	6.3 -6.4 0.8	71.0 13.7 24.0
34-4	WING SER VO IN SUCCESSION TO A TO	3910186-14 3930178-1	6.2*	65 . 1*
	OMNI ANT. INSTL.	3940148-2 3960102-6	0-1	-31.0 250.6
	VHF ANT. INSTL Aud 10 control Panel Instl. Headphone Instl.	3940148-2 3960102-6 3960113-2 3970131-1 3970137-2	0.1 0.7 0.5 1.9 0.2 0.2 0.2 0.2	63-4 12-5
	MICROPHONE INSTL		0.2	14.6 18.5 17.0
	FIRST NAVZCOM INSTL. COMPONENTS CABLE INSTL., RH WHF & OMNI ANTENNAS	3960139-1 3930186-6 3950136 3950206	1 1.44	10.0
37-4	FIRST NAVICOM INSTALLATION FIRST NAVICOM INSTL. COMPONENTS CABLE INSTL., RH VHF & OMNI ANTENNAS RADIO COQLING INSTL COM., ANTENNA & NAV COUPLER KIT (REQUIRED FOR & AVIABLE ONLY WITH SECOND NAVICOM) SECOND NAVICOM INSTL	3930206 3910185-12	1.0 1.1*	12.5 37.1
	SECOND NAV/COM) SECOND NAV/COM INSTA KIT	3930186-7	0.1	11.0
	SECOND NA V/COM INSTL. KIT LH VHF AN TENNA INSTL.	3930186-7 3960113-1	0.1	63.4
		I	L	

- -

1 October 1978

CESSNA MODEL R182

SECTION 6 WEIGHT & BALANCE/ EQUIPMENT LIST

6-25/(6-26 blank)

1 October 1978

 \sim

ITEM NO	EQUIPMENT LIST DESCRIPTION	REF DRAWING	WT LBS	ARM INS
H46-A H52-A H55-A H56-A H61-R	ANTENNA COUPLER INSTL. CABLE INSTL. ANTENNA ANTENNA ADAPTOR INSTALLATION REMOVED AOF ANTI PRECIP SENSE ANTENNA COM ANTENNA, FLUSH MCLNTED (FLUSH MTD IN LEADING EDGE VERTICAL FIN MIC-HEADSET COMBINATION (LITE WEIGHT) IREQUIRES E89-0 INSTALLATION) HEADSET-MICROPHONE, PADDED (STOWED) (REQUIRES E89-0 INSTALLATION) CABIN SPEAKER (REQUIRED AS PART OF STALL WARNING SYS.)	3960111-1 3960136-1 3960139-1 3960116-6 3910154-63 C596530-0101 C596531-0101 C596510-0101	0.4 0.3 -0.2 0.8 1.4 0.3 1.1 1.9	10.0 27.8 17.0 141.8 184.6 14.0 14.0 45.1
J01-A	J. SPECIAL OPTION PACKAGES SKYLANE RG II KIT CO7-A GROUND SERVICE RECEPTICLE C19-0 HEATED PITOT & STALL WARNING C31-A COURTESY ENTRANCE LIGHTS (2) C40-A NAV LIGHT DETECTORS C43-A FLASHING BEACON LIGHT	SECTICN 9-1 2270003-1 0770724-3 0700615-11 0701013-1 E-2 0701042-3	51-5* 3-2 0-5 0-5 NEGL	43.3* -2.6 26.5 61.7 208.6
J 04-A	001-0 TRUE AIR SPEED IND. (NET CHANGE) DC4-A STATIC ALTERNATE AIR SCURCE E85-A DUAL CONTROLS HC1-A+1 CESSNA 3CC ADF (R-546E) H16-A+1 CESSNA 3CC TRANSPONDER (RT359A) FIRST 3CC NAV/COM (RT-385A) H28-A+1 EMERGENCY LOCATOR TRANSMITTER H31-A-L CESSNA 2CCA AUTO-PILOT NAV-PAC (SKYLANE RG II ONLY) (NET CHANGE) SEE THE 1578 PAM AUTOMICS SECTION FOR	1201008-12 0701028-1 0760101-4 3910159-20 3910127-28 0470419-23 3910162-24	138-23 16-1*	2030 14.4 14.1 22.4 17.4 36.0 134.69 46.0*
	DEFINITION OF NAV-PAC H07-A 400 GLIDESLOPE (R-4438) H13-A 400 MARKER BEACON (R-402A) SECOND 3CC NAV/COM (RT-385A)	3910157-11 3910164-12	4+6 2+7 8+8	88.9 70.8 16.0

~

 \sim

CESSNA MODEL R182

~.

SECTION 6 WEIGHT & BALANCE/ EQUIPMENT LIST Í

SECTION 7 AIRPLANE & SYSTEMS DESCRIPTIONS

SECTION 7 AIRPLANE & SYSTEMS DESCRIPTIONS

TABLE OF CONTENTS

Page

-- .

Introduction	7-3
Airframe	7-3
Flight Controls	7-8
Trim Systems	7-8
Instrument Panel	7-8
Ground Control	7-9
Wing Flap System	-10
Landing Gear System	-11
Landing Gear Lever	-11
Landing Gear Position Indicator Lights 7	-12
Landing Gear Operation	-12
Emergency Hand Pump	-12
Landing Gear Warning System	-13
Baggage Compartment	-13
Seats	-13
	-14
	-15
	-19
	-15 -15
Shoulder Harnesses	
Shoulder Harnesses	-15
Shoulder Harnesses	-15 -17
Shoulder Harnesses 7 Integrated Seat Belt/Shoulder Harnesses With Inertia Reels 7 Entrance Doors And Cabin Windows 7 Control Locks 7	-15 -17 -17
Shoulder Harnesses 7 Integrated Seat Belt/Shoulder Harnesses With Inertia Reels 7 Entrance Doors And Cabin Windows 7 Control Locks 7 Engine 7	-15 -17 -17 -18
Shoulder Harnesses 7 Integrated Seat Belt/Shoulder Harnesses With Inertia Reels 7 Entrance Doors And Cabin Windows 7 Control Locks 7 Engine 7 Engine Controls 7 Engine Instruments 7	-15 -17 -17 -18 -18
Shoulder Harnesses 7 Integrated Seat Belt/Shoulder Harnesses With Inertia Reels 7 Entrance Doors And Cabin Windows 7 Control Locks 7 Engine 7 Engine Controls 7 Engine Instruments 7	-15 -17 -17 -18 -18 -18
Shoulder Harnesses 77 Integrated Seat Belt/Shoulder Harnesses With Inertia Reels 77 Entrance Doors And Cabin Windows 77 Control Locks 77 Engine 77 Engine Controls 77 Engine Instruments 77 New Engine Break-In And Operation 77	-15 -17 -17 -18 -18 -18 -19 -19
Shoulder Harnesses 7 Integrated Seat Belt/Shoulder Harnesses With Inertia Reels 7 Entrance Doors And Cabin Windows 7 Control Locks 7 Engine 7 Engine Controls 7 Engine Instruments 7 New Engine Break-In And Operation 7 Engine Oil System 7	-15 -17 -17 -18 -18 -18 -19 -19 -19 -20
Shoulder Harnesses 7 Integrated Seat Belt/Shoulder Harnesses With Inertia Reels 7 Entrance Doors And Cabin Windows 7 Control Locks 7 Engine 7 Engine Controls 7 Engine Instruments 7 New Engine Break-In And Operation 7 Engine Oil System 7 Ignition-Starter System 7	-15 -17 -17 -18 -18 -19 -19 -20 -20
Shoulder Harnesses 7 Integrated Seat Belt/Shoulder Harnesses With Inertia Reels 7 Entrance Doors And Cabin Windows 7 Control Locks 7 Engine 7 Engine Controls 7 Engine Instruments 7 New Engine Break-In And Operation 7 Engine Oil System 7 Ignition-Starter System 7 Air Induction System 7	-15 -17 -17 -18 -18 -19 -19 -20 -20 -20
Shoulder Harnesses 77 Integrated Seat Belt/Shoulder Harnesses With Inertia Reels 77 Entrance Doors And Cabin Windows 77 Control Locks 77 Engine 77 Engine Controls 77 Engine Instruments 77 New Engine Break-In And Operation 77 Engine Oil System 77 Ignition-Starter System 77 Air Induction System 77 Exhaust System 77 Carburetor And Priming System 77	-15 -17 -17 -18 -18 -19 -19 -20 -20 -21 -22
Shoulder Harnesses 77 Integrated Seat Belt/Shoulder Harnesses With Inertia Reels 77 Entrance Doors And Cabin Windows 77 Control Locks 77 Engine 77 Engine Controls 77 Engine Instruments 77 New Engine Break-In And Operation 77 Ignition-Starter System 77 Air Induction System 77 Exhaust System 77 Carburetor And Priming System 77 Cooling System 77	-15 -17 -17 -18 -19 -19 -20 -20 -21 -22 -22 -22 -23
Shoulder Harnesses 77 Integrated Seat Belt/Shoulder Harnesses With Inertia Reels 77 Entrance Doors And Cabin Windows 77 Control Locks 77 Engine 77 Engine Controls 77 Engine Instruments 77 New Engine Break-In And Operation 77 Ignition-Starter System 77 Air Induction System 77 Exhaust System 77 Carburetor And Priming System 77 Cooling System 77	-15 -17 -17 -18 -19 -19 -20 -20 -21 -22 -22 -22

- -

CESSNA MODEL R182

Page

ţ

(

ł

TABLE OF CONTENTS (Continued)

Hydraulic System	. 7-27 (
Brake System	. 7-29
Electrical System	
Master Switch	
Avionics Power Switch	
Ammeter	. 7-31
Alternator Control Unit and Low-Voltage Warning Light	
Circuit Breakers And Fuses	. 7-32 \
Ground Service Plug Receptacle	. 7-33
Lighting Systems	
Exterior Lighting	
Interior Lighting	
Cabin Heating, Ventilating And Defrosting System	
Pitot-Static System And Instruments	
Airspeed Indicator	
Rate-Of-Climb Indicator	7-38
Altimeter	7-38
Vacuum System And Instruments	7-38
Attitude Indicator	7-38
Directional Indicator	7-40 (
Suction Gage	
Stall Warning System	7-40
Avionics Support Equipment	7-41
Audio Control Panel	7-41
Transmitter Selector Switch	7-41
Automatic Audio Selector Switch	
Audio Selector Switches	
Microphone - Headset Installations	
Static Dischargers	7-44

1 October 1978

INTRODUCTION

This section provides description and operation of the airplane and its systems. Some equipment described herein is optional and may not be installed in the airplane. Refer to Section 9, Supplements, for details of other optional systems and equipment.

AIRFRAME

The airplane is an all-metal, four-place, high-wing, single-engine airplane equipped with retractable tricycle landing gear and designed for general utility purposes.

The construction of the fuselage is a conventional formed sheet metal bulkhead, stringer, and skin design referred to as semimonocoque. Major items of structure are the front and rear carry-through spars to which the wings are attached, a bulkhead with attaching plates at the base of the forward doorposts for the lower attachment of the wing struts, and the forgings and structure for the retractable main landing gear in the lower aft portion of the fuselage center section. Four engine mount stringers are also attached to the forward doorposts and extend forward to the firewall. A tunnel incorporated into the fuselage structure below the engine, in front of the firewall, is required for the forward retracting nose wheel.

The externally braced wings, containing the fuel tanks, are constructed of a front and rear spar with formed sheet metal ribs, doublers, and stringers. The entire structure is covered with aluminum skin. The front spars are equipped with wing-to-fuselage and wing-to-strut attach fittings. The aft spars are equipped with wing-to-fuselage attach fittings, and are partial-span spars. Conventional hinged ailerons and single-slot type flaps are attached to the trailing edge of the wings. The ailerons are constructed of a forward spar containing balance weights, formed sheet metal ribs and "V" type corrugated aluminum skin joined together at the trailing edge. The flaps are constructed basically the same as the ailerons, with the exception of balance weights and the addition of a formed sheet metal leading edge section.

The empennage (tail assembly) consists of a conventional vertical stabilizer, rudder, horizontal stabilizer, and elevator. The vertical stabilizer consists of a forward and aft spar, formed sheet metal ribs and reinforcements, four skin panels, formed leading edge skins, and a dorsal. The rudder is constructed of a forward and aft spar, formed sheet metal ribs and reinforcements, and a wrap-around skin panel. The top of the rudder incorporates a leading edge extension which contains a balance weight. The horizontal stabilizer is constructed of a forward and aft spar, ribs and

ł

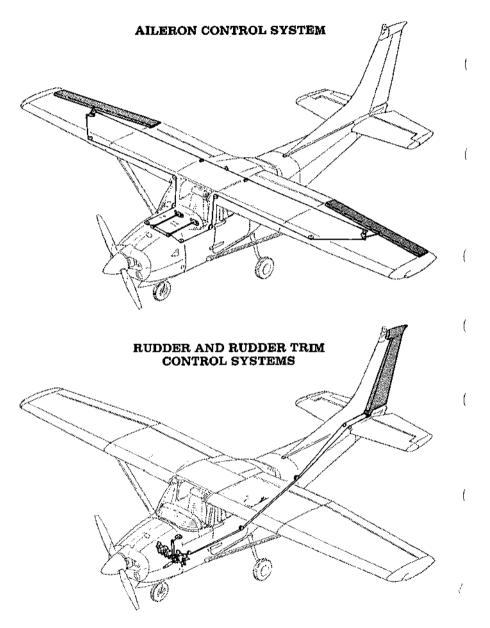


Figure 7-1. Flight Control and Trim Systems (Sheet 1 of 2)

í

ł

SECTION 7 AIRPLANE & SYSTEMS DESCRIPTIONS

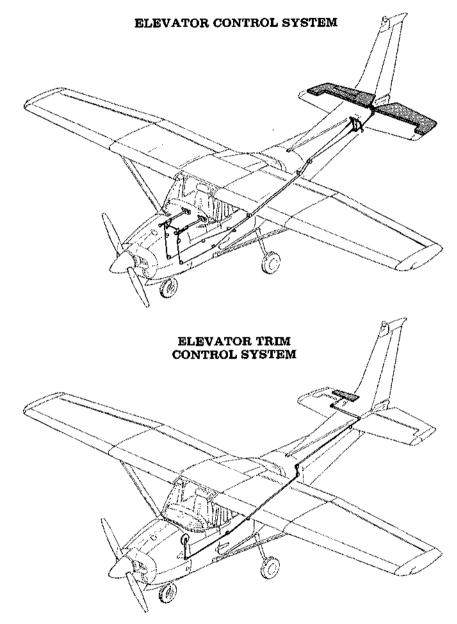


Figure 7-1. Flight Control and Trim Systems (Sheet 2 of 2)

CESSNA MODEL R182

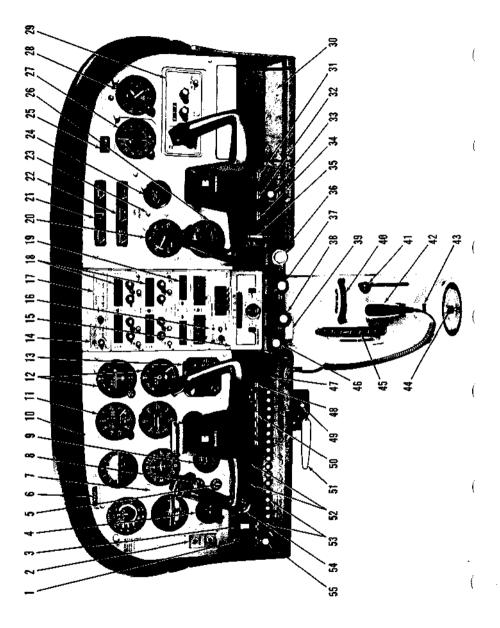


Figure 7-2. Instrument Panel (Sheet 1 of 2)

1 October 1978

- 1. Master Switch
- 2. Phone and Auxiliary Mike Jacks
- 3. Auxiliary Fuel Pump Switch
- 4. Clock
- 5. Suction Gage
- 6. Airplane Registration Number
- 7. Flight Instrument Group
- 8. Fuel Pressure Gage
- 9. Carburetor Air Temperature Gage
- 10. Approach Plate Light and Switch
- 11. Encoding Altimeter
- 12. Course Deviation Indicators
- 13. DME
- 14. Marker Beacon Indicator Lights and Switches
- 15. Autopilot Control Unit
- 16. Transponder
- 17. Audio Control Panel
- 18. Radios
- 19. Area Navigation Radio
- 20. Manifold Pressure Gage
- 21. Fuel Quantity Indicators and Ammeter
- 22. Cylinder Head Temperature, Oil Temperature, and Oil Pressure Gages
- 23. Low-Voltage Warning Light
- 24. Economy Mixture Indicator
- 25. Flight Hour Recorder
- 26. Tachometer
- 27. ADF Bearing Indicator
- 28. Secondary Altimeter
- 29. ADF Radio
- 30. Map Compartment

- 31. Defroster Control Knob
- 32. Cabin Air Control Knob
- 33. Cigar Lighter
- 34. Cabin Heat Control Knob
- 35. Wing Flap Switch and Position Indicator
- 36. Mixture Control Knob
- 37. Propeller Control Knob
- 38. Throttle (With Friction Lock)
- 39. Control Pedestal Light
- 40. Rudder Trim Control Wheel and Position Indicator
- 41. Cowl Flap Control Lever
- 42. Microphone
- 43. Fuel Selector Light
- 44. Fuel Selector Valve Handle
- 45. Elevator Trim Control Wheel and Position Indicator
- 46. Carburetor Heat Control Knob
- 47. Landing Gear Lever
- 48. Landing Gear Position Indicator Lights
- 49. Static Pressure Alternate Source Valve
- 50. Electrical Switches
- 51. Parking Brake Handle
- 52. Instrument and Radio Dial Light Dimming Rheostats
- 53. Circuit Breakers
- 54. Ignition Switch
- 55. Primer

CESSNA MODEL R182

7-7

stiffeners, center upper and lower skin panels, and two left and two right wrap-around skin panels which also form the leading edges. The horizontal stabilizer also contains the elevator trim tab actuator. Construction of the elevator consists of formed leading edge skins, a forward spar, ribs, torque tube and bellcrank, left upper and lower "V" type corrugated skins, and right upper and lower "V" type corrugated skins incorporating a trailing edge cut-out for the trim tab. The elevator trim tab consists of a spar and upper and lower "V" type corrugated skins. Both elevator tip leading edge extensions incorporate balance weights.

FLIGHT CONTROLS

The airplane's flight control system (see figure 7-1) consists of conventional aileron, rudder, and elevator control surfaces. The control surfaces are manually operated through mechanical linkage using a control wheel for the ailerons and elevator, and rudder/brake pedals for the rudder. The elevator control system is equipped with downsprings (which provide improved stability in flight.

Extensions are available for the rudder/brake pedals. They consist of a rudder pedal face, two spacers and two spring clips. To install an extension, place the clip on the bottom of the extension under the bottom of the (rudder pedal and snap the top clip over the top of the rudder pedal. Check that the extension is firmly in place. To remove the extensions, reverse the above procedures.

TRIM SYSTEMS

Manually-operated rudder and elevator trim is provided (see figure 7-1). Rudder trimming is accomplished through a bungee connected to the rudder control system and a trim control wheel mounted on the control pedestal. Rudder trimming is accomplished by rotating the horizontally mounted trim control wheel either left or right to the desired trim position. Rotating the trim wheel to the right will trim nose-right; conversely, rotating it to the left will trim nose-left. Elevator trimming is accomplished through the elevator trim tab by utilizing the vertically mounted trim control wheel. Forward rotation of the trim wheel will trim nosedown; conversely, aft rotation will trim nose-up. The airplane may also be equipped with an electric elevator trim system. For details concerning this system, refer to Section 9, Supplements.

INSTRUMENT PANEL

The instrument panel (see figure 7-2) is designed around the basic "T" configuration. The gyros are located immediately in front of the pilot, and

- í

arranged vertically. The airspeed indicator and altimeter are located to the left and right of the gyros, respectively. The remainder of the flight instruments are located around the basic "T". The fuel pressure gage. suction gage and carburetor air temperature gage are located below the flight instruments, and to the left of the pilot's control column. Avionics equipment is stacked approximately on the centerline of the panel, with the right side of the panel containing the manifold pressure gage, lowvoltage warning light, tachometer, map compartment, and space for additional instruments and avionics equipment. The engine instrument cluster and fuel quantity indicators are on the right side of the avionics stack near the top of the panel. A switch and control panel, at the lower edge of the instrument panel, contains most of the switches, controls, and circuit breakers necessary to operate the airplane. The left side of the panel contains the master switch, engine primer, auxiliary fuel pump switch. ignition switch, light intensity controls, electrical switches, circuit breakers, landing gear indicator lights and landing gear lever. The center area contains the carburetor heat control, throttle, propeller control, and mixture control. The right side of the panel contains the wing flap switch and position indicator, cabin heat, cabin air, and defroster control knobs and the cigar lighter. A pedestal, extending from the switch and control panel to the floorboard, contains the elevator and rudder trim control wheels, cowl flap control lever, and microphone bracket. The fuel selector valve handle is located at the base of the pedestal. A parking brake handle is mounted below the switch and control panel, in front of the pilot. A static pressure alternate source valve control knob may also be installed below the switch and control panel adjacent to the parking brake handle.

For details concerning the instruments, switches, circuit breakers, and controls on this panel, refer in this section to the description of the systems to which these items are related.

GROUND CONTROL

Effective ground control while taxiing is accomplished through nose wheel steering by using the rudder pedals; left rudder pedal to steer left and right rudder pedal to steer right. When a rudder pedal is depressed, a spring-loaded steering bungee (which is connected to the nose gear and to the rudder bars) will turn the nose wheel through an arc of approximately 15° each side of center. By applying either left or right brake, the degree of turn may be increased up to 30° each side of center.

Moving the airplane by hand is most easily accomplished by attaching a tow bar to the nose gear strut. If a tow bar is not available, or pushing is required, use the wing struts as push points. Do not use the vertical or horizontal surfaces to move the airplane. If the airplane is to be towed by

í

vehicle, never turn the nose wheel more than 30° either side of center or structural damage to the nose gear could result.

The minimum turning radius of the airplane, using differential braking and nose wheel steering during taxi, is approximately 27 feet. To obtain a minimum radius turn during ground handling, the airplane may be rotated around either main landing gear by pressing down on a tailcone bulkhead just forward of the horizontal stabilizer to raise the nose wheel off the ground.

WING FLAP SYSTEM

The single-slot type wing flaps (see figure 7-3) are extended or retracted by positioning the wing flap switch lever on the right side of the switch and control panel to the desired flap deflection position. The switch lever is moved up or down in a slotted panel that provides mechanical stops at the 10° and 20° positions. For flap settings greater than 10°, move the switch lever to the right to clear the stop and position it as desired. A scale and pointer on the left side of the switch lever indicates flap travel in degrees. The wing flap system circuit is protected by a 15-amp push-to-

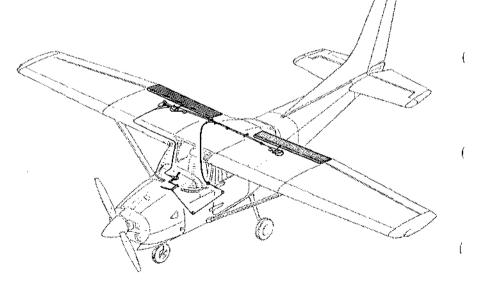


Figure 7-3, Wing Flap System

Ĺ

reset circuit breaker, labeled FLAP, on the left side of the switch and control panel.

A gear warning interconnect switch is incorporated in the flap system, and sounds a warning horn when the flaps are extended beyond 25° with the landing gear retracted.

LANDING GEAR SYSTEM

The landing gear is a retractable, tricycle type with a steerable nose wheel and two main wheels. Shock absorption is provided by the tubular spring-steel main landing gear struts and the air/oil nose gear shock strut. Each main gear wheel is equipped with a hydraulically actuated singledisc brake on the inboard side of each wheel.

The landing gear extension, retraction, and main gear down lock operation is accomplished by hydraulic actuators powered by an electrically-driven hydraulic power pack (see figure 7-7). The power pack is located aft of the firewall between the pilot's and copilot's rudder pedals. The hydraulic system fluid level may be checked by utilizing the dipstick/filler cap located on the top right side of the power pack adjacent to the motor mounting flange. The system should be checked at 25-hour intervals, and anytime a hydraulic failure in the system requires the use of the emergency hand pump to extend the landing gear. If the fluid level is at or below the ADD line on the dipstick; hydraulic fluid (MIL-H-5606) should be added to bring the level to the top of the dipstick/filler cap opening. A normal operating pressure of 1000 PSI to 1500 PSI is automatically maintained in the landing gear system, and is sufficient to provide a positive up lock pressure on the main landing gear. The nose gear incorporates an over-center mechanical linkage which provides a positive mechanical up and down lock. Mechanically-actuated wheel well doors are provided for the nose gear. The doors open when the nose gear extends, and close when it retracts.

Power pack operation is started and stopped by a pressure switch, and hydraulic pressure is directed by the landing gear lever. Two position indicator lights are provided to show landing gear position. The landing gear system is also equipped with a nose gear safety (squat) switch, an emergency extension hand pump, and a gear-up warning system.

LANDING GEAR LEVER

The landing gear lever is located on the switch and control panel to the

right of the electrical switches. The lever has two positions, labeled GEAR UP and GEAR DOWN, which give a mechanical indication of the gear position selected. From either position, the lever must be pulled out to clear a detent before it can be repositioned; operation of the landing gear system will not begin until the lever has been repositioned. After the lever has been repositioned, it directs hydraulic pressure within the system to actuate the gear to the selected position.

LANDING GEAR POSITION INDICATOR LIGHTS

Two position indicator lights, adjacent to the landing gear control lever, indicate that the gear is either up or down and locked. Both the gearup (amber) and gear-down (green) lights are the press-to-test type, incorporating dimming shutters for night operation. If an indicator light bulb should burn out, it can be replaced in flight with the bulb from the remaining indicator light.

LANDING GEAR OPERATION

To retract or extend the landing gear, pull out on the gear lever and move it to the desired position. After the lever is positioned, the power pack will create pressure in the system and actuate the landing gear to the selected position. During a normal cycle, the gear locks up or down, limit switches close, and the indicator light comes on (amber for up and green for down) indicating completion of the cycle. After indicator light illumination, the power pack will continue to run until the fluid pressure reaches 1500 PSI, opens the pressure switch, and turns the power pack off. Whenever fluid pressure in the system drops below 1000 PSI, the pressure switch will close and start power pack operation, except when the nose gear safety (squat) switch is open.

The safety (squat) switch, actuated by the nose gear, electrically prevents inadvertent retraction whenever the nose gear strut is compressed by the weight of the airplane. When the nose gear is lifted off the runway during takeoff, the squat switch will close, which may cause the power pack to operate for 1 to 2 seconds and return system pressure to 1500 PSI in the event pressure has dropped below 1000 PSI. A switch type circuit breaker is also provided in the system as a maintenance safety feature. With the switch pulled out, landing gear operation is prevented. After maintenance is completed, and prior to flight, the switch should be pushed back in.

EMERGENCY HAND PUMP

A hand-operated hydraulic pump, located between the front seats, is provided for manual extension of the landing gear in the event of a hydraulic system failure. The landing gear cannot be retracted with the

hand pump. To utilize the pump, extend the handle forward, and pump vertically. For complete emergency procedures, refer to Section 3.

LANDING GEAR WARNING SYSTEM

The airplane is equipped with a landing gear warning system designed to help prevent the pilot from inadvertently making a wheels-up landing. The system consists of a throttle actuated switch which is electrically connected to a dual warning unit. The warning unit is connected to the airplane speaker.

When the throttle is retarded below approximately 12 inches of manifold pressure at low altitude (master switch on), the throttle linkage will actuate a switch which is electrically connected to the gear warning portion of a dual warning unit. If the landing gear is retracted (or not down and locked), an intermittent tone will be heard on the airplane speaker. An interconnect switch in the wing flap system also sounds the horn when the wing flaps are extended beyond 25° with the landing gear retracted.

BAGGAGE COMPARTMENT

The baggage compartment consists of the area from the back of the rear passenger seats to the aft cabin bulkhead. A baggage shelf, above the wheel well, extends aft from the aft cabin bulkhead. Access to the baggage compartment and the shelf is gained through a lockable baggage door on the left side of the airplane, or from within the airplane cabin. A baggage net with six tie-down straps is provided for securing baggage, and is attached by tying the straps to tie-down rings provided in the airplane. For further information on baggage tie-down, refer to Section 6. When loading the airplane, children should not be placed or permitted in the baggage compartment, and any material that may be hazardous to the airplane or occupants should not be placed anywhere in the airplane. For baggage area and door dimensions, refer to Section 6.

SEATS

ł

The seating arrangement consists of two individually adustable fourway or six-way seats for the pilot and front seat passenger, and a splitbacked fixed seat for the rear seat passengers. A child's seat (if installed) is located at the aft cabin bulkhead behind the rear seat.

Ĺ

ł

The four-way seats may be moved forward or aft, and the seat back angle adjusted to three positions. To position either seat, lift the tubular handle under the center of the seat, slide the seat into position, release the handle, and check that the seat is locked in place. The seat back is springloaded to the vertical position. To adjust its position, raise the lever under the outboard side of either seat, reposition the back to the desired angle, release the lever, and check that the back is locked in place. The seat backs will also fold full forward.

The six-way seats may be moved forward or aft, and are infinitely adjustable for height and seat back angle. To position the seat, lift the tubular handle under the center of the seat bottom, slide the seat into position, release the handle, and check that the seat is locked in place. Raise or lower the seat by rotating the large crank under the inboard corner of either seat. The seat back is adjusted by rotating the small crank under the outboard corner of either seat. The seat bottom angle will change as the seat back angle changes, providing proper support. The seat backs will also fold full forward.

The rear passengers' seat consists of a fixed one-piece seat bottom with individually adjustable seat backs. The seat backs are adjusted by raising levers below the respective seat backs at the outboard ends of the seat cushion. After adjusting the seat back to the desired position (it is springloaded to the vertical position), release the lever and check that the seat back is locked in place. The seat backs will also fold full forward.

A child's seat may be installed aft of the rear passengers' seat, and is held in place by two brackets mounted on the floorboard. The seat is designed to swing upward into a stowed position against the aft cabin bulkhead when not in use. To stow the seat, rotate the seat bottom up and aft as far as it will go. When not in use, the seat should be kept in the stowed position.

Headrests are available for any of the seat configurations except the child's seat. To adjust the headrest, apply enough pressure to it to raise or lower it to the desired level. The headrest may be removed at any time by raising it until it disengages from the top of the seat back.

SEAT BELTS AND SHOULDER HARNESSES

All seat positions are equipped with seat belts (see figure 7-4). The pilot's and front passenger's seats are also equipped with separate shoulder harnesses; separate shoulder harnesses are also available for the rear seat positions. Integrated seat belt/shoulder harnesses with inertia

reels can be furnished for the pilot's and front passenger's seat positions if desired.

SEAT BELTS

The seat belts used with the pilot's and front passenger's seats, and the child's seat (if installed), are attached to fittings on the floorboard. The buckle half is inboard of each seat and the link half is outboard of each seat. The belts for the rear seat are attached to the seat frame, with the link halves on the left and right sides of the seat bottom, and the buckles at the center of the seat bottom.

To use the seat belts for the front seats, position the seat as desired, and then lengthen the link half of the belt as needed by grasping the sides of the link and pulling against the belt. Insert and lock the belt link into the buckle. Tighten the belt to a snug fit. Seat belts for the rear seat, and the child's seat, are used in the same manner as the belts for the front seats. To release the seat belts, grasp the top of the buckle opposite the link and pull upward.

SHOULDER HARNESSES

Each front seat shoulder harness is attached to a rear doorpost above the window line and is stowed behind a stowage sheath above the cabin door. To stow the harness, fold it and place it behind the sheath. When rear seat shoulder harnesses are furnished, they are attached adjacent to the lower corners of the aft side windows. Each rear seat harness is stowed behind a stowage sheath above an aft side window. No harness is available for the child's seat.

To use a front or rear seat shoulder harness, fasten and adjust the seat belt first. Lengthen the harness as required by pulling on the connecting link on the end of the harness and the narrow release strap. Snap the connecting link firmly onto the retaining stud on the seat belt link half. Then adjust to length. A properly adjusted harness will permit the occupant to lean forward enough to sit completely erect, but prevent excessive forward movement and contact with objects during sudden deceleration. Also, the pilot will want the freedom to reach all controls easily.

Removing the shoulder harness is accomplished by pulling upward on the narrow release strap, and removing the harness connecting link from the stud on the seat belt link. In an emergency, the shoulder harness may be removed by releasing the seat belt first and allowing the harness, still attached to the link half of the seat belt, to drop to the side of the seat.

CESSNA MODEL R182

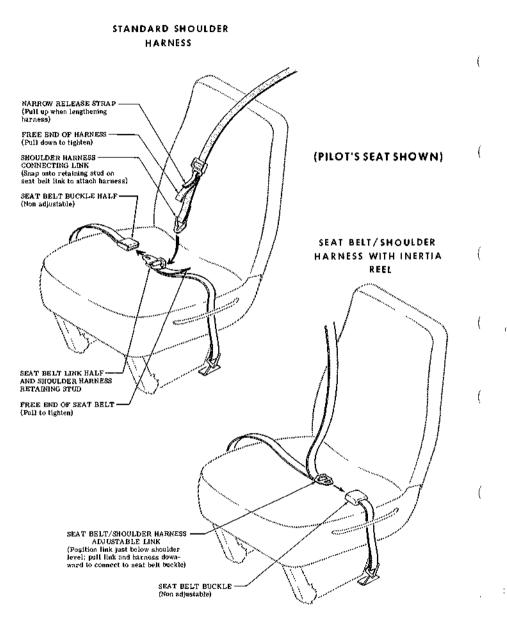


Figure 7-4. Seat Belts and Shoulder Harnesses

1 October 1978

INTEGRATED SEAT BELT/SHOULDER HARNESSES WITH INERTIA REELS

Integrated seat belt/shoulder harnesses with inertia reels are available for the pilot and front seat passenger. The seat belt/shoulder harnesses extend from inertia reels located in the cabin top structure, through slots in the overhead console marked PILOT and COPILOT, to attach points inboard of the two front seats. A separate seat belt half and buckle is located outboard of the seats. Inertia reels allow complete freedom of body movement. However, in the event of a sudden deceleration, they will lock automatically to protect the occupants.

To use the seat belt/shoulder harness, position the adjustable metal link on the harness at about shoulder level, pull the link and harness downward, and insert the link in the seat belt buckle. Adjust belt tension across the lap by pulling upward on the shoulder harness. Removal is accomplished by releasing the seat belt buckle, which will allow the inertia reel to pull the harness inboard of the seat.

ENTRANCE DOORS AND CABIN WINDOWS

Entry to, and exit from the airplane is accomplished through either of two entry doors, one on each side of the cabin at the front seat positions (refer to Section 6 for cabin and cabin door dimensions). The doors incorporate a recessed exterior door handle, a conventional interior door handle, a key-operated door lock (left door only), a door stop mechanism, and an openable window in the left door. An openable right door window is also available.

To open the doors from outside the airplane, utilize the recessed door handle near the aft edge of each door. Depress the forward end of the handle to rotate it out of its recess, and then pull outboard. To close or open the doors from inside the airplane, use the combination door handle and arm rest. The inside door handle has three positions and a placard at its base which reads OPEN, CLOSE, and LOCK. The handle is spring-loaded to the CLOSE (up) position. When the door has been pulled shut and latched, lock it by rotating the door handle forward to the LOCK position (flush with the arm rest). When the handle is rotated to the LOCK position, an over-center action will hold it in that position. Both cabin doors should be locked prior to flight, and should not be opened intentionally during flight.

NOTE

Accidental opening of a cabin door in flight due to improper closing does not constitute a need to land the

I

T.

airplane. The best procedure is to set up the airplane in a trimmed condition at approximately 80 KIAS, open a window, momentarily shove the door outward slightly, and forcefully close and lock the door.

Exit from the airplane is accomplished by rotating the door handle from the LOCK position, past the CLOSE position, aft to the OPEN position and pushing the door open. To lock the airplane, lock the right cabin door with the inside handle, close the left cabin door, and using the ignition key, lock the door.

The left cabin door is equipped with an openable window which is held in the closed position by a detent equipped latch on the lower edge of the window frame. To open the window, rotate the latch upward. The window is equipped with a spring-loaded retaining arm which will help rotate the window outward and hold it there. An openable window is also available for the right door, and functions in the same manner as the left window. If required, either window may be opened at any speed up to 182 KIAS. The cabin top windows (if installed), rear side windows, and rear window are of the fixed type and cannot be opened.

CONTROL LOCKS

A control lock is provided to lock the aileron and elevator control surfaces to prevent damage to these systems by wind buffeting while the airplane is parked. The lock consists of a shaped steel rod with a red metal flag attached to it. The flag is labeled CONTROL LOCK, REMOVE BEFORE STARTING ENGINE. To install the control lock, align the hole in the top of the pilot's control wheel shaft with the hole in the top of the shaft collar on the instrument panel and insert the rod into the aligned holes. Installation of the lock will secure the ailerons in a neutral position and the elevators in a slightly trailing edge down position. Proper installation of the lock will place the red flag over the ignition switch. In areas where high or gusty winds occur, a control surface lock should be installed over the vertical stabilizer and rudder. The control lock and any other type of locking device should be removed prior to starting the engine.

ENGINE

The airplane is powered by a horizontally-opposed, six-cylinder, overhead-valve, air-cooled, carbureted engine with a wet sump oil system. The engine is a Lycoming Model O-540-J3C5D and is rated at 235 horsepower at 2400 RPM. Major accessories include a starter, belt-driven alternator, and propeller governor on the front of the engine and dual magnetos encased in a single drive housing, fuel pump, vacuum pump, and full-flow

ŕ

ł

(

I

oil filter on the rear of the engine.

ENGINE CONTROLS

Engine manifold pressure is controlled by a throttle located on the center area of the switch and control panel. The throttle operates in a conventional manner; in the full forward position, the throttle is open, and in the full aft position, it is closed. A friction lock, which is a round knurled disk, is located at the base of the throttle and is operated by rotating the lock clockwise to increase friction or counterclockwise to decrease it.

The mixture control, mounted near the propeller control, is a red knob with raised points around the circumference and is equipped with a lock button in the end of the knob. The rich position is full forward, and full aft is the idle cut-off position. For small adjustments, the control may be moved forward by rotating the knob clockwise, and aft by rotating the knob counterclockwise. For rapid or large adjustments, the knob may be moved forward or aft by depressing the lock button in the end of the control, and then positioning the control as desired.

ENGINE INSTRUMENTS

Engine operation is monitored by the following instruments: oil pressure gage, oil temperature gage, cylinder head temperature gage, tachometer, manifold pressure gage and fuel pressure gage. An economy mixture (EGT) indicator and carburetor air temperature gage are also available.

The oil pressure gage, located on the right side of the instrument panel, is operated by oil pressure. A direct pressure oil line from the engine delivers oil at engine operating pressure to the oil pressure gage. Gage markings indicate that minimum idling pressure is 25 PSI (red line), the normal operating range is 60 to 90 PSI (green arc), and maximum pressure is 100 PSI (red line).

Oil temperature is indicated by a gage adjacent to the oil pressure gage. The gage is operated by an electrical resistance type temperature sensor which receives power from the airplane electrical system. Oil temperature limitations are the normal operating range (green arc) which is 100°F (38°C) to 245°F (118°C), and the maximum (red line) which is 245°F (118°C).

The cylinder head temperature gage, below the left fuel quantity indicator, is operated by an electrical-resistance type temperature sensor on the engine which receives power from the airplane electrical system. Temperature limitations are the normal operating range (green arc) which is 200°F (93°C) to 500°F (260°C) and the maximum (red line) which is 500°F (260°C).

The engine-driven mechanical tachometer is located on the lower right side of the instrument panel. The instrument is calibrated in increments of 100 RPM and indicates both engine and propeller speed. An hour meter ¹ below the center of the tachometer dial records elapsed engine time in hours and tenths. Instrument markings include a normal operating range (green arc) of 2100 to 2400 RPM, and a maximum (red line) of 2400 RPM.

The manifold pressure gage is located on the right side of the instrument panel above the tachometer. The gage is direct reading and indicates induction air manifold pressure in inches of mercury. It has a normal operating range (green arc) of 15 to 23 inches of mercury.

The fuel pressure gage, located below the flight instruments, and slightly to the left of the control column, indicates fuel pressure to the carburetor. Gage markings indicate that minimum pressure is 0.5 PSI (red line), normal operating range is 0.5 to 8 PSI (green arc), and maximum pressure is 8 PSI (red line).

An economy mixture (EGT) indicator is available for the airplane and is located on the right side of the instrument panel. A thermocouple probe in the left exhaust stack assembly measures exhaust gas temperature and transmits it to the indicator. The indicator serves as a visual aid to the pilot in adjusting the mixture during climb or cruise as described in Section 4. Exhaust gas temperature varies with fuel-to-air ratio, power, and RPM. However, the difference between the peak EGT and the EGT at the desired mixture setting is essentially constant and this provides a useful leaning aid. The indicator is equipped with a manually positioned reference pointer which is especially useful for leaning during climb.

A carburetor air temperature gage is available for the airplane. Details of this gage are presented in Section 9, Supplements.

NEW ENGINE BREAK-IN AND OPERATION

The engine underwent a run-in at the factory and is ready for the full range of use. It is, however, suggested that cruising be accomplished at 65% to 75% power until a total of 50 hours has accumulated or oil consumption has stabilized. This will ensure proper seating of the rings.

The airplane is delivered from the factory with corrosion preventive oil in the engine. If, during the first 25 hours, oil must be added, use only aviation grade straight mineral oil conforming to Specification No. MIL-L-6082.

ENGINE OIL SYSTEM

Oil for engine lubrication and propeller governor operation is supp-

lied from a sump on the bottom of the engine. The capacity of the sump is 8 quarts (one additional quart is contained in the engine oil filter). Oil is drawn from the sump through a filter screen on the end of a pickup tube to the engine-driven oil pump. Oil from the pump passes through an oil pressure screen, full flow oil filter, a pressure relief valve at the rear of the right oil gallery, and a thermostatically controlled remote oil cooler. Oil from the remote cooler is then circulated to the left gallery and propeller governor. The engine parts are then lubricated by oil from the galleries. After lubricating the engine, the oil returns to the sump by gravity. The filter adapter in the full flow oil filter is equipped with a bypass valve which will cause lubricating oil to bypass the filter in the event the filter becomes plugged, or the oil temperature is extremely cold.

An oil dipstick is located at the rear of the engine on the right side, and an oil filler tube is on top of the crankcase near the front of the engine. The dipstick and oil filler are accessible through doors on the engine cowling. The engine should not be operated on less than five quarts of oil. To minimize loss of oil through the breather, fill to seven quarts for normal flights of less than three hours. For extended flight, fill to eight quarts (dipstick indication only). For engine oil grade and specifications, refer to Section 8 of this handbook.

An oil quick-drain valve is installed on the bottom of the oil sump, to provide a quick, clean method of draining the engine oil. To drain the oil, slip a hose over the end of the valve and push upward on the end of the valve until it snaps into the open position. Spring clips will hold the valve open. After draining, use a suitable tool to snap the valve into the extended (closed) position and remove the drain hose.

IGNITION-STARTER SYSTEM

Engine ignition is provided by two engine-driven magnetos encased in a single drive housing, and two spark plugs in each cylinder. The right magneto fires the lower left and upper right spark plugs, and the left magneto fires the lower right and upper left spark plugs. Normal operation is conducted with both magnetos due to the more complete burning of the fuel-air mixture with dual ignition.

Ignition and starter operation is controlled by a rotary type switch located on the left switch and control panel. The switch is labeled clockwise, OFF, R, L, BOTH, and START. The engine should be operated on both magnetos (BOTH position) except for magneto checks. The R and L positions are for checking purposes and emergency use only. When the switch is rotated to the spring-loaded START position (with the master switch in the ON position), the starter contactor is energized and the starter will crank the engine. When the switch is released, it will automati-

Т

ł

cally return to the BOTH position.

AIR INDUCTION SYSTEM

The engine air induction system receives ram air through an intake scoop in the upper left hand engine cowling. The intake scoop is covered by an air filter which removes dust and other foreign matter from the induction air. Airflow passing through the filter enters an airbox. After passing through the airbox, induction air enters the inlet in the carburetor which is below the engine, and is then ducted to the engine cylinders through intake manifold tubes. In the event carburetor ice is encountered or the intake filter becomes blocked, alternate heated air can be obtained from a shroud around the left muffler through a duct to a valve, in the airbox, operated by the carburetor heat control on the instrument panel. Heated air from the muffler shroud is obtained from unfiltered air inside the cowling. Use of full carburetor heat at full throttle will result in aloss of approximately one inch of manifold pressure.

EXHAUST SYSTEM

Exhaust gas from each cylinder passes through riser assemblies to a muffler and tailpipe on each side of the engine. Shrouds are constructed around the outside of the mufflers to form heating chambers. The left muffler supplies heat to the carburetor, and the right muffler supplies heat to the cabin.

CARBURETOR AND PRIMING SYSTEM

The engine is equipped with a horizontally-mounted, up-draft, floattype, fixed jet carburetor mounted below the engine adjacent to the firewall. The carburetor is equipped with an enclosed accelerator pump, an idle cut-off mechanism, and a manual mixture control. Fuel is delivered from the fuel system to the carburetor by gravity flow, the engine-driven fuel pump, and/or auxiliary fuel pump. In the carburetor, fuel is atomized, proportionally mixed with intake air, and delivered to the cylinders through intake manifold tubes. The proportion of atomized fuel to air may be controlled, within limits, by the mixture control located on the center area of the switch and control panel.

For easy starting in cold weather, the engine is equipped with a manual primer. The primer is actually a small pump which draws fuel from the fuel strainer when the plunger knob is pulled out, and injects it into the engine intake ports when the knob is pushed back in. The plunger knob is equipped with a lock and, after being pushed full in, must be rotated either left or right until the knob cannot be pulled out.

COOLING SYSTEM

Ram air for engine cooling enters through two intake openings in the front of the engine cowling. The cooling air is directed through the remote oil cooler (behind the left intake opening), and around the cylinders and other areas of the engine by baffling, and is then exhausted through cowl flaps on the lower aftedge of the cowling. The cowl flaps are mechanically operated from the cabin by means of a cowl flap lever on the right side of the control pedestal. The pedestal is labeled OPEN, COWL FLAPS. CLOSED. Before starting the engine, and throughout takeoff and high power operation, the cowl flap lever should be placed in the OPEN position for maximum cooling. This is accomplished by moving the lever to the right to clear a detent, then moving the lever up to the OPEN position. Anytime the lever is repositioned, it must first be moved to the right. While in cruise flight, cowl flaps should be adjusted to keep the cylinder head temperature at approximately two-thirds of the normal operating range (green arc). During extended let-downs, the cowl flaps should be completely closed by pushing the cowl flap lever down to the CLOSED position.

A winterization kit is available for the airplane. Details of this kit are presented in Section 9, Supplements.

PROPELLER

The airplane has an all-metal, two-bladed, constant-speed, governorregulated propeller. A setting introduced into the governor with the propeller control establishes the propeller speed, and thus the engine speed to be maintained. The governor then controls flow of engine oil, boosted to high pressure by the governing pump, to or from a piston in the propeller hub. Oil pressure acting on the piston twists the blades toward high pitch (low RPM). When oil pressure to the piston in the propeller hub is relieved, centrifugal force, assisted by an internal spring, twists the blades toward low pitch (high RPM).

A control knob on the center area of the switch and control panel is used to set the propeller and control engine RPM as desired for various flight conditions. The knob is labeled PROPELLER, PUSH INCR RPM. When the control knob is pushed in, blade pitch will decrease, giving a higher RPM. When the control knob is pulled out, the blade pitch increases, thereby decreasing RPM. The propeller control knob is equipped with a vernier feature which allows slow or fine RPM adjustments by rotating the knob clockwise to increase RPM, and counterclockwise to decrease it. To make rapid or large adjustments, depress the button on the end of the control knob and reposition the control as desired.

ί,

FUEL SYSTEM

The airplane fuel system (see figure 7-5) consists of two vented integral fuel tanks (one in each wing), a four-position selector valve, fuel strainer, manual primer, engine-driven fuel pump, auxiliary fuel pump and carburetor. Refer to figure 7-6 for fuel quantity data for the system.

Fuel flows by gravity from the two integral wing tanks to a fourposition selector valve, labeled BOTH, RIGHT, LEFT, and OFF. With the selector valve in either the BOTH, RIGHT, or LEFT position, fuel flows through a strainer to the engine-driven fuel pump, and from the pump to the carburetor. When the auxiliary fuel pump is operating, it draws fuel from a tee located between the strainer and the engine-driven fuel pump, and delivers it to the carburetor. From the carburetor, mixed fuel and air flows to the cylinders through intake manifold tubes. The manual primer draws its fuel from the fuel strainer and injects it into the engine intake ports.

The airplane may be serviced to a reduced fuel capacity to permit heavier cabin loadings by filling each fuel tank to the bottom edge of the fuel filler neck, thus giving a reduced fuel load of 34.5 gallons in each tank (32.5 gallons usable in all flight conditions).

Fuel system venting is essential to system operation. Complete blockage of the venting system will result in a decreasing fuel flow and eventual engine stoppage. Venting consists of an interconnecting vent line between the tanks, and check valve equipped overboard vents in each tank. The overboard vents protrude from the bottom surfaces of the wings behind the wing struts, slightly below the upper attach points of the struts. The fuel filler caps are vacuum vented; the vents will open and allow air to enter the fuel tanks in case the overboard vents become blocked.

Fuel quantity is measured by two float-type fuel quantity transmitters (one in each tank) and indicated by two electrically-operated fuel quantity indicators on the right side of the instrument panel. The fuel quantity indicators are calibrated in gallons (lower scale) and pounds (upper scale). An empty tank is indicated by a red line and the letter E. When an indicator shows an empty tank, approximately 2 gallons remain in a tank as unusable fuel. The indicators cannot be relied upon for accurate readings during skids, slips, or unusual attitudes. If both indicator pointers should rapidly move to a zero reading, check the cylinder head temperature gage for operation. If these gages are not indicating, an electrical malfunction has occurred.

The auxiliary fuel pump switch is located on the left side of the switch and control panel and is a rocker-type switch. It is labeled AUX FUEL PUMP. When the pump is operating, it will maintain fuel pressure to the

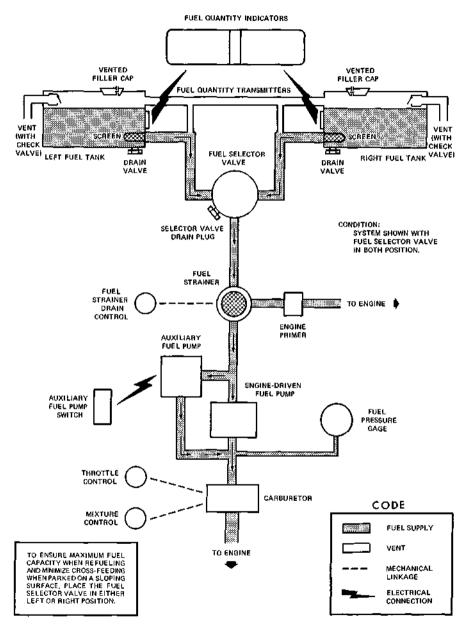


Figure 7-5. Fuel System

CESSNA MODEL R182

FUEL QUANTITY DATA (U. S. GALLONS)					
TANKS	TOTAL USABLE FUEL ALL FLIGHT CONDITIONS	TOTAL UNUSABLE FUEL	TOTAL FUEL VOLUME		
STANDARD (46 Gal. Each)	88	4	92		

Figure 7-6. Fuel Quantity Data

carburetor. It should be used whenever the indicated fuel pressure falls below 0.5 PSI, but is not required when gravity flow and/or the enginedriven fuel pump can maintain indicated pressures above 0.5 PSI.

The fuel selector valve should be in the BOTH position for takeoff, climb, descent, landing, and maneuvers that involve prolonged slips or skids. Operation from either LEFT or RIGHT tank is reserved for level cruising flight only.

NOTE

Unusable fuel is at a minimum due to the design of the fuel system. However, with 1/4 tank or less, prolonged uncoordinated flight such as slips or skids can uncover the fuel tank outlets, causing fuel starvation and engine stoppage. Therefore, with low fuel reserves, do not allow the airplane to remain in uncoordinated flight for periods in excess of one minute.

NOTE

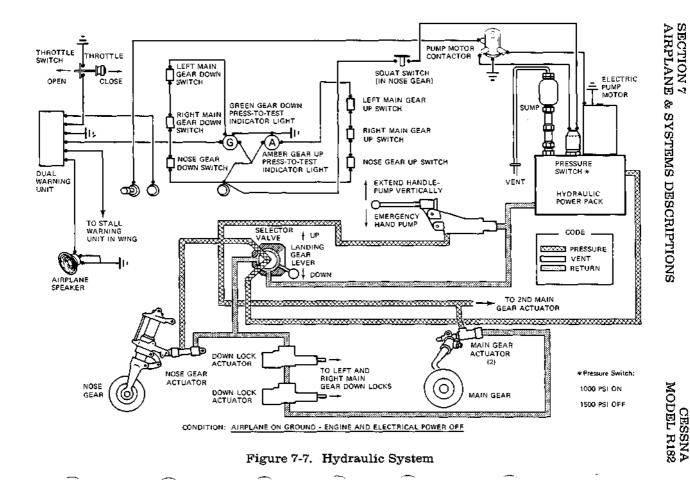
When the fuel selector valve handle is in the BOTH position in cruising flight, unequal fuel flow from each tank may occur if the wings are not maintained exactly level. Resulting wing heaviness can be alleviated gradually by turning the selector valve handle to the tank in the "heavy" wing.

NOTE

It is not practical to measure the time required to consume all of the fuel in one tank, and, after switching to the opposite tank, expect an equal duration from the remaining fuel. The airspace in both fuel tanks is interconnected f

by a vent line and, therefore, some sloshing of fuel between tanks can be expected when the tanks are nearly full and the wings are not level.

The fuel system is equipped with drain values to provide a means for the examination of fuel in the system for contamination and grade. The system should be examined before the first flight of every day and after each refueling, by using the sampler cup provided to drain fuel from the wing tank sumps, and by utilizing the fuel strainer drain under an access panel on the left side of the engine cowling. The fuel tanks should be filled after each flight to prevent condensation.


HYDRAULIC SYSTEM

Hydraulic power (see figure 7-7) is supplied by an electrically-driven hydraulic power pack located behind the firewall between the pilot's and copilot's rudder pedals. The power pack's only function is to supply hydraulic power for operation of the retractable landing gear. This is accomplished by applying hydraulic pressure to actuator cylinders which extend or retract the gear. The hydraulic system normally operates at 1000 PSI to 1500 PSI, and is protected by relief valves which prevent high pressure damage to the pump and other components in the system. The electrical portion of the power pack is protected by a 30-amp push-pull type circuit breaker switch, labeled GEAR PUMP, on the left switch and control panel.

The hydraulic power pack is turned on by a pressure switch on the power pack when the landing gear lever is placed in either the GEAR UP or GEAR DOWN position. When the lever is placed in the GEAR UP or GEAR DOWN position, it mechanically rotates a selector valve which applies hydraulic pressure in the direction selected. As soon as the landing gear reaches the selected position, a series of electrical switches will illuminate one of two indicator lights on the instrument panel to show gear position and completion of the cycle. After indicator light illumination, hydraulic pressure will continue to build until the power pack pressure switch turns the power pack off.

The hydraulic system includes an emergency hand pump to permit manual extension of the landing gear in the event of hydraulic power pack failure. The hand pump is located on the cabin floor between the front seats.

During normal operations, the landing gear should require from 5 to 7 seconds to fully extend or retract. For malfunctions of the hydraulic and landing gear systems, refer to Section 3 of this handbook.

October 1978

-

7-28

ł

í

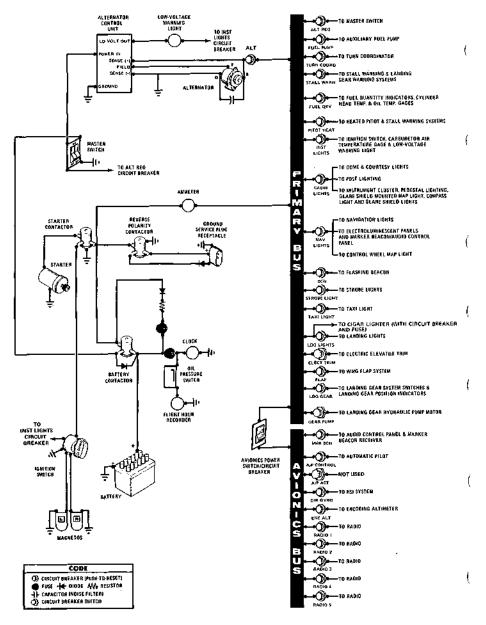
BRAKE SYSTEM

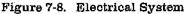
The airplane has a single-disc, hydraulically-actuated brake on each main landing gear wheel. Each brake is connected, by a hydraulic line, to a master cylinder attached to each of the pilot's rudder pedals. The brakes are operated by applying pressure to the top of either the left (pilot's) or right (copilot's) set of rudder pedals, which are interconnected. When the airplane is parked, both main wheel brakes may be set by utilizing the parking brake which is operated by a handle below the left side of the switch and control panel. To apply the parking brake, set the brakes with the rudder pedals, pull the handle aft, and rotate it 90° down.

For maximum brake life, keep the brake system properly maintained, and minimize brake usage during taxi operations and landings.

Some of the symptoms of impending brake failure are: gradual decrease in braking action after brake application, noisy or dragging brakes, soft or spongy pedals, and excessive travel and weak braking action. If any of these symptoms appear, the brake system is in need of immediate attention. If, during taxi or landing roll, braking action decreases, let up on the pedals and then re-apply the brakes with heavy pressure. If the brakes become spongy or pedal travel increases, pumping the pedals should build braking pressure. If one brake becomes weak or fails, use the other brake sparingly while using opposite rudder, as required, to offset the good brake.

ELECTRICAL SYSTEM


The airplane is equipped with a 28-volt, direct-current electrical system (see figure 7-8). The system is powered by an engine-driven, 60amp alternator and a 24-volt battery (a heavy duty battery is available) located in the tailcone aft of the baggage compartment wall. Power is supplied to most general electrical and all avionics circuits through the primary bus bar and the avionics bus bar, which are interconnected by an avionics power switch. The primary bus is on anytime the master switch is turned on, and is not affected by starter or external power usage. Both bus bars are on anytime the master switch and avionics power switches are turned on.


CAUTION

Prior to turning the master switch on or off, starting the engine, or applying an external power source, the avionics power switch, labeled AVN PWR, should be turned off to prevent any harmful transient voltage from damaging the avionics equipment.

SECTION 7 AIRPLANE & SYSTEMS DESCRIPTIONS

CESSNA MODEL R182

1 October 1978

_.

MASTER SWITCH

The master switch is a split-rocker type switch labeled MASTER, and is ON in the up position and off in the down position. The right half of the switch, labeled BAT, controls all electrical power to the airplane. The left half, labeled ALT, controls the alternator.

Normally, both sides of the master switch should be used simultaneously; however, the BAT side of the switch could be turned ON separately to check equipment while on the ground. To check or use avionics equipment or radios while on the ground, the avionics power switch must be turned ON. The ALT side of the switch, when placed in the off position, removes the alternator from the electrical system. With this switch in the off position, the entire electrical load is placed on the battery. Continued operation with the alternator switch in the off position will reduce battery power low enough to open the battery contactor, remove power from the alternator field, and prevent alternator restart.

AVIONICS POWER SWITCH

Electrical power from the airplane primary bus to the avionics bus (see figure 7-8) is controlled by a single-rocker switch/circuit breaker labeled AVN PWR. The switch is located on the left side of the avionics circuit breaker panel and is ON in the up position and OFF in the down position. With the switch in the OFF position, no electrical power will be applied to the avionics equipment, regardless of the position of the master switch or the individual equipment switches. The avionics power switch also functions as a circuit breaker. If an electrical malfunction should occur and cause the circuit breaker to open, electrical power to the avionics equipment will be interrupted and the switch will automatically move to the OFF position. If this occurs, allow the circuit breaker to cool approximately two minutes before placing the switch in the ON position again. If the circuit breaker opens again, do not reset it. The avionics power switch should be placed in the OFF position prior to turning the master switch ON or off, starting the engine, or applying an external power source, and may be utilized in place of the individual avionics equipment switches.

AMMETER

The ammeter, located between the fuel gages, indicates the amount of current, in amperes, from the alternator to the battery or from the battery to the airplane electrical system. When the engine is operating and the master switch is turned on, the ammeter indicates the charging rate applied to the battery. In the event the alternator is not functioning or the electrical load exceeds the output of the alternator, the ammeter indicates the battery discharge rate.

SECTION 7 AIRPLANE & SYSTEMS DESCRIPTIONS

CESSNA MODEL R182

ALTERNATOR CONTROL UNIT AND LOW-VOLTAGE WARNING LIGHT

The airplane is equipped with a combination alternator regulator high-low voltage control unit mounted on the engine side of the firewall and a red warning light labeled LOW VOLTAGE, on the right side of the instrument panel adjacent to the manifold pressure gage.

In the event an over-voltage condition occurs, the alternator control unit automatically removes alternator field current which shuts down the alternator. The battery will then supply system current as shown by a discharge rate on the ammeter. Under these conditions, depending on electrical system load, the low-voltage warning light will illuminate when system voltage drops below normal. The alternator control unit may be reset by turning the master switch off and back on again. If the warning light does not illuminate, normal alternator charging has resumed; however, if the light does illuminate again, a malfunction has occurred, and the flight should be terminated as soon as practicable.

NOTE

Illumination of the low-voltage light and ammeter discharge indications may occur during low RPM conditions with an electrical load on the system, such as during a low RPM taxi. Under these conditions, the light will go out at higher RPM. The master switch need not be recycled since an over-voltage condition has not occurred to de-activate the alternator system.

The warning light may be tested by turning on the landing lights and momentarily turning off the ALT portion of the master switch while leaving the BAT portion turned on.

CIRCUIT BREAKERS AND FUSES

Most of the electrical circuits in the airplane are protected by "push-toreset" circuit breakers mounted on the lower left side of the switch and control panel. The landing gear circuit is protected by a push-pull type circuit breaker on the left side of the switch and control panel. In addition to the individual circuit breakers, a single-rocker switch/circuit breaker, labeled AVN PWR on the avionics panel, located on the left cabin sidewall between the forward doorpost and the switch and control panel, also protects the avionics systems. The cigar lighter is protected by a (manually-reset type circuit breaker on the back of the lighter, and a fuse behind the instrument panel. The control wheel map light (if installed) is protected by the NAV LIGHTS circuit breaker and a fuse behind the instrument panel. Electrical circuits which are not protected by circuit breakers are the battery contactor closing (external power) circuit, clock circuit, and flight hour recorder circuit. These circuits are protected by fuses mounted adjacent to the battery.

GROUND SERVICE PLUG RECEPTACLE

A ground service plug receptacle may be installed to permit the use of an external power source for cold weather starting and during lengthy maintenance work on the electrical and electronic equipment. Details of the ground service plug receptacle are presented in Section 9, Supplements.

LIGHTING SYSTEMS

EXTERIOR LIGHTING

ļ

Conventional navigation lights are located on the wing tips and tail stinger, and dual landing/taxi lights are installed in the cowl nose cap. Additional lighting is available and includes a strobe light on each wing tip, a flashing beacon on top of the vertical stabilizer, and two courtesy lights, one under each wing, just outboard of the cabin doors. Details of the strobe light system are presented in Section 9, Supplements. The courtesy lights are operated by a switch located on the left rear door post. All exterior lights, except the courtesy lights, are operated by rocker switches on the left switch and control panel. The switches are ON in the up position and off in the down position.

The flashing beacon should not be used when flying through clouds or overcast; the flashing light reflected from water droplets or particles in the atmosphere, particularly at night, can produce vertigo and loss of orientation.

INTERIOR LIGHTING

Instrument and control panel lighting is provided by flood and integral lighting, with electroluminescent and post lighting also available. Dual concentric light dimming rheostats on the left side of the switch and control panel control the intensity of all lighting. The following paragraphs describe the various lighting systems and their controls.

The left and right sides of the switch and control panel, and the marker beacon/audio control panel may be lighted by electroluminescent panels which do not require light bulbs for illumination. To útilize this lighting, turn the NAV light rocker switch to the ON position and rotate the inner knob labeled EL PANEL, on the right dimming rheostat, clockwise to the desired light intensity.

SECTION 7 AIRPLANE & SYSTEMS DESCRIPTIONS

Instrument panel flood lighting consists of four red lights on the underside of the glare shield, and two red flood lights in the forward section of the overhead console. This lighting is controlled by rotating the outer knob labeled FLOOD, on the left dimming rheostat, clockwise to the desired intensity.

The instrument panel may be equipped with post lights which are mounted at the edge of each instrument or control and provide direct lighting. This lighting is controlled by rotating the inner knob labeled POST, on the left dimming rheostat, clockwise to the desired light intensity. Flood and post lights may be used simultaneously by rotating both the FLOOD and POST knobs clockwise to the desired intensity for each type of lighting.

The engine instrument cluster, radio equipment, and magnetic compass have integral lighting and operate independently of post or flood lighting. To operate these lights, rotate the outer knob labeled ENG-RADIO, on the right dimming rheostat, clockwise to the desired intensity. (However, for daylight operation, the compass and engine instrument lights may be turned off while still maintaining maximum light intensity for the digital readouts in the radio equipment. This is accomplished by rotating the ENG-RADIO knob full counterclockwise. Check that the flood lights, post lights, and electroluminescent lights are turned off for daylight operation by rotating the FLOOD, POST, and EL PANEL knobs full counterclockwise.

The control pedestal has two integral lights and, if the airplane is equipped with oxygen, the overhead console is illuminated by post lights. Pedestal and console light intensity is controlled by the knob labeled ENG- (RADIO, on the right dimming rheostat.

Map lighting is provided by overhead console map lights and a glare shield mounted map light. The airplane may also be equipped with a control wheel map light. The overhead console map lights operate in conjunction with instrument panel flood lighting and consist of two openings just aft of the red instrument panel flood lights. The map light (openings have sliding covers controlled by small round knobs which uncover the openings when moved toward each other. The covers should be kept closed unless the map lights are required. A map light and toggle switch, mounted in front of the pilot on the underside of the glare shield, is used for illuminating approach plates or other charts when using a control wheel mounted approach plate holder. The switch is labeled MAP LIGHT, ON, OFF and light intensity is controlled by the knob labeled FLOOD, on the left dimming rheostat. The pilot's control wheel map light (if installed) illuminates the lower portion of the cabin in front of the pilot, and is used for checking maps and other flight data during night operation. The light is utilized by turning the NAV light switch to the ON position, and adjusting

light intensity with the rheostat control knob on the bottom of the control wheel.

The airplane is equipped with a dome light aft of the overhead console. The light is operated by a slide-type switch, aft of the light lens, which turns the light on when moved to the right.

The most probable cause of a light failure is a burned out bulb; however, in the event any of the lighting systems fail to illuminate when turned on, check the appropriate circuit breaker. If the circuit breaker has opened (white button popped out), and there is no obvious indication of a short circuit (smoke or odor), turn off the light switch of the affected lights, reset the breaker, and turn the switch on again. If the breaker opens again, do not reset it.

CABIN HEATING, VENTILATING AND DEFROSTING SYSTEM

The temperature and volume of airflow into the cabin can be regulated by manipulation of the push-pull CABIN HEAT and CABIN AIR control knobs (see figure 7-9). Both control knobs are the double button type with locks to permit intermediate settings.

NOTE

For improved partial heating on mild days, pull out the CABIN AIR knob slightly when the CABIN HEAT knob is out. This action increases the airflow through the system, increasing efficiency, and blends cool outside air with the exhaust manifold heated air, thus eliminating the possibility of overheating the system ducting.

Front cabin heat and ventilating air is supplied by outlet holes spaced across a cabin manifold just forward of the pilot's and copilot's feet. Rear cabin heat and air is supplied by two ducts from the manifold, one extending down each side of the cabin to an outlet at the front door post at floor level. Windshield defrost air is also supplied by a duct leading from the cabin manifold to an outlet on top of the antiglare shield. Defrost air flow is controlled by a rotary type knob labeled DEFROST.

For cabin ventilation, pull the CABIN AIR knob out, with the CABIN HEAT knob pushed full in. To raise the air temperature, pull the CABIN HEAT knob out until the desired temperature is attained. Additional heat is available by pulling the knob out farther; maximum heat is available with the CABIN HEAT knob pulled out and the CABIN AIR knob pushed full in.

SECTION 7 AIRPLANE & SYSTEMS DESCRIPTIONS

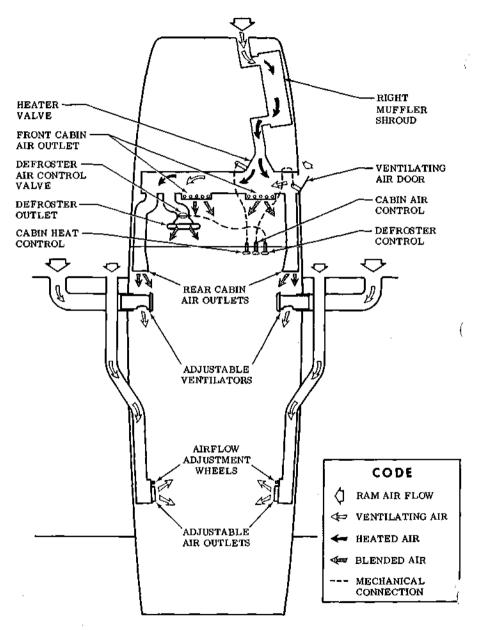


Figure 7-9. Cabin Heating, Ventilating, and Defrosting System

1 October 1978

CESSNA MODEL R182

ĺ

SECTION 7 AIRPLANE & SYSTEMS DESCRIPTIONS

Separate adjustable ventilators supply additional ventilation air to the cabin. One near each upper corner of the windshield supplies air for the pilot and copilot, and two ventilators are available for the rear cabin area to supply air to the rear seat passengers. Each rear ventilator outlet can be adjusted in any desired direction by moving the entire outlet to direct the airflow up or down, and by moving a tab protruding from the center of the outlet left or right to obtain left or right airflow. Ventilation airflow may be closed off completely, or partially closed according to the amount of airflow desired, by rotating an adjustment wheel adjacent to the outlet.

PITOT-STATIC SYSTEM AND INSTRUMENTS

The pitot-static system supplies ram air pressure to the airspeed indicator and static pressure to the airspeed indicator, rate-of-climb indicator and altimeter. The system is composed of either an unheated or heated pitot tube mounted on the lower surface of the left wing, two external static ports on the left and right sides of the forward fuselage, and the associated plumbing necessary to connect the instruments to the sources.

The heated pitot system (if installed) consists of a heating element in the pitot tube, a rocker switch labeled PITOT HEAT and a 10-amp push-to reset circuit breaker on the left side of the switch and control panel, and associated wiring. When the pitot heat switch is turned on, the element in the pitot tube is heated electrically to maintain proper operation in possible icing conditions. Pitot heat should be used only as required.

A static pressure alternate source valve may be installed adjacent to the parking brake, and can be used if the external static source is malfunctioning. This valve supplies static pressure from inside the cabin instead of the external static ports.

If erroneous instrument readings are suspected due to water or ice in the pressure line going to the standard external static pressure source, the alternate static source valve should be pulled on.

Pressures within the cabin will vary with heater/vents opened or closed and windows open. Refer to Sections 3 and 5 for the effect of varying cabin pressures on airspeed and altimeter readings.

AIRSPEED INDICATOR

The airspeed indicator is calibrated in knots and miles per hour. Limitation and range markings (in KIAS) include the white arc (37 to 95

SECTION 7 AIRPLANE & SYSTEMS DESCRIPTIONS

knots), green arc (42 to 160 knots), yellow arc (160 to 182 knots), and a red line (182 knots).

If a true airspeed indicator is installed, it is equipped with a rotatable ring which works in conjunction with the airspeed indicator dial in a manner similar to the operation of a flight computer. To operate the indicator, first rotate the ring until **pressure** altitude is aligned with outside air temperature in degrees Fahrenheit. Pressure altitude should not be confused with indicated altitude. To obtain pressure altitude, momentarily set the barometric scale on the altimeter to 29.92 and read pressure altitude on the altimeter. Be sure to return the altimeter barometric scale to the original barometric setting after pressure altitude has been obtained. Having set the ring to correct for altitude and temperature, read the true airspeed shown on the rotatable ring by the indicator pointer. For best accuracy, the indicated airspeed should be corrected to calibrated airspeed by referring to the Airspeed Calibration chart in Section 5. Knowing the calibrated airspeed, read true airspeed on the ring opposite the calibrated airspeed.

RATE-OF-CLIMB INDICATOR

The rate-of-climb indicator depicts airplane rate of climb or descent in feet per minute. The pointer is actuated by atmospheric pressure changes (resulting from changes of altitude as supplied by the static source.

ALTIMETER

Airplane altitude is depicted by a barometric type altimeter. A knob near the lower left portion of the indicator provides adjustment of the instrument's barometric scale to the current altimeter setting.

VACUUM SYSTEM AND INSTRUMENTS

An engine-driven vacuum system (see figure 7-10) provides the suction necessary to operate the attitude indicator and directional indicator. The system consists of a vacuum pump mounted on the engine, a vacuum relief valve and vacuum system air filter on the aft side of the firewall below the instrument panel, and instruments (including a suction gage) on the left side of the instrument panel.

ATTITUDE INDICATOR

The attitude indicator gives a visual indication of flight attitude. Bank attitude is presented by a pointer at the top of the indicator relative to the bank scale which has index marks at 10°, 20°, 30°, 60°, and 90° either side of

CESSNA MODEL R182

(

ł

SECTION 7 AIRPLANE & SYSTEMS DESCRIPTIONS

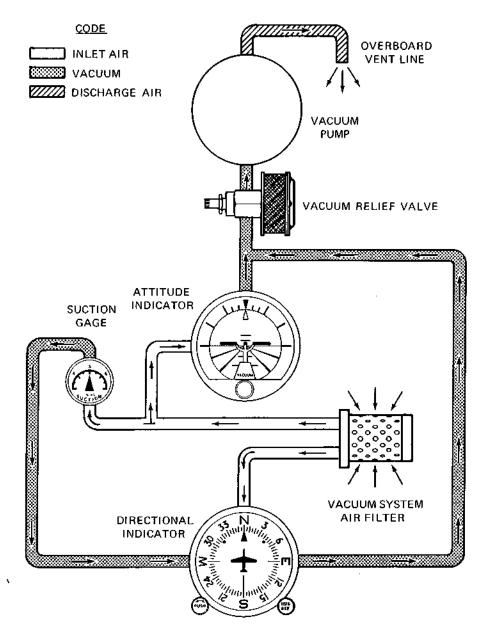


Figure 7-10. Vacuum System

SECTION 7 AIRPLANE & SYSTEMS DESCRIPTIONS

the center mark. Pitch and roll attitudes are presented by a miniature airplane in relation to the horizon bar. A knob at the bottom of the instrument is provided for in-flight adjustment of the miniature airplane (to the horizon bar for a more accurate flight attitude indication.

DIRECTIONAL INDICATOR

A directional indicator displays airplane heading on a compass card in relation to a fixed simulated airplane image and index. The directional indicator will precess slightly over a period of time. Therefore, the compass card should be set in accordance with the magnetic compass just prior to takeoff, and occasionally re-adjusted on extended flights. A knob on the lower left edge of the instrument is used to adjust the compass card to correct for any precession.

SUCTION GAGE

The suction gage, located below the flight instruments, is calibrated in inches of mercury and indicates suction available for operation of the attitude and directional indicators. The desired suction range is 4.5 to 5.4 inches of mercury. A suction reading below this range may indicate a (system malfunction or improper adjustment, and in this case, the indicators should not be considered reliable.

STALL WARNING SYSTEM

The airplane is equipped with a vane-type stall warning unit, in the leading edge of the left wing, which is electrically connected to a stall warning horn under the map compartment. A 5-amp push-to-reset circuit breaker labeled STALL WARN, on the left side of the switch and control panel, protects the stall warning system. The vane in the wing senses the change in airflow over the wing, and operates the warning horn at airspeeds between 5 and 10 knots above the stall in all configurations.

If the airplane has a heated stall warning system, the vane and sensor unit in the wing leading edge is equipped with a heating element. The heated part of the system is operated by the PITOT HEAT switch, and is protected by the PITOT HEAT circuit breaker.

The stall warning system should be checked during the pre-flight inspection by momentarily turning on the master switch and actuating the vane in the wing. The system is operational if the warning horn sounds as the vane is pushed upward. ť

AVIONICS SUPPORT EQUIPMENT

The airplane may, at the owner's discretion, be equipped with various types of avionics support equipment such as an audio control panel, microphone-headsets, and static dischargers. The following paragraphs discuss these items.

AUDIO CONTROL PANEL

Operation of radio equipment is covered in Section 9 of this handbook. When one or more radios is installed, a transmitter/audio switching system is provided (see figure 7-11). The operation of this switching system is described in the following paragraphs.

TRANSMITTER SELECTOR SWITCH

A rotary type transmitter selector switch, labeled XMTR SEL, is provided to connect the microphone to the transmitter the pilot desires to use. To select a transmitter, rotate the switch to the number corresponding to that transmitter. The numbers 1, 2 and 3 above the switch correspond to the top, second and third transceivers in the avionics stack.

The audio amplifier in the NAV/COM radio is required for speaker and transmitter operation. The amplifier is automatically selected, along with the transmitter, by the transmitter selector switch. As an example, if the number 1 transmitter is selected, the audio amplifier in the associated NAV/COM receiver is also selected, and functions as the amplifier for ALL speaker audio. In the event the audio amplifier in use fails, as evidenced by loss of all speaker audio and transmitter. This should re-establish speaker audio and transmitter. This should re-establish speaker audio and transmitter operation. Since headset audio is not affected by audio amplifier operation, the pilot should be aware that, while utilizing a headset, the only indication of audio amplifier failure is loss of the selected transmitter. This can be verified by switching to the speaker function.

AUTOMATIC AUDIO SELECTOR SWITCH

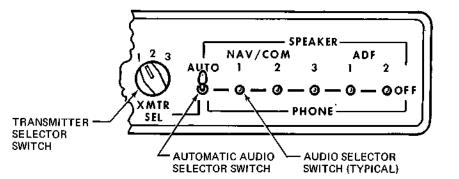
A toggle switch, labeled AUTO, can be used to automatically match the appropriate NAV/COM receiver audio to the transmitter being selected. To utilize this automatic feature, leave all NAV/COM receiver switches in the OFF (center) position, and place the AUTO selector switch in either the SPEAKER or PHONE position, as desired. Once the AUTO selector switch is positioned, the pilot may then select any transmitter and its associated NAV/COM receiver audio simultaneously with the transmitter selector switch. If automatic audio selection is not desired, the AUTO selector switch should be placed in the OFF (center) position.

1 October 1978

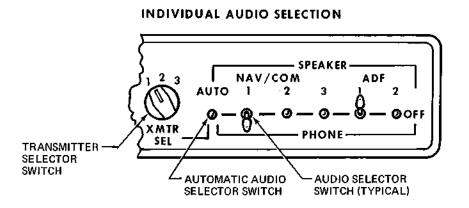
SECTION 7 AIRPLANE & SYSTEMS DESCRIPTIONS

CESSNA MODEL R182

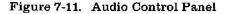
Í


ť

f


í

ſ


AUTOMATIC AUDIO SELECTION

As illustrated, the number 1 transmitter is selected, the AUTO selector switch is in the SPEAKER position, and the NAV/COM 1, 2 and 3 and ADF 1 and 2 audio selector switches are in the OFF position. With the switches set as shown, the pilot will transmit on the number 1 transmitter and hear the number 1 NAV/COM receiver through the airplane speaker.

As illustrated, the number 1 transmitter is selected, the AUTO selector switch is in the OFF position, the number 1 NAV/COM receiver is in the PHONE position, and the number 1 ADF is in the SPEAKER position. With the switches set as shown, the pilot will transmit on the number 1 transmitter and hear the number 1 NAV/COM receiver on a headset; while the passengers are listening to the ADF audio through the airplane speaker. If another audio selector switch is placed in either the PHONE or SPEAKER position, it will be heard simultaneously with either the number 1 NAV/COM or number 1 ADF respectively.

NOTE

Cessna radios are equipped with sidetone capability (monitoring of the operator's own voice transmission). Sidetone will be heard on either the airplane speaker or a headset as selected with the AUTO selector switch. Sidetone may be eliminated by placing the AUTO selector switch in the OFF position, and utilizing the individual radio selector switches. Adjustment of speaker sidetone volume is accomplished by adjusting the sidetone potentiometer located inside the audio control panel. During adjustment, be aware that if the sidetone level is set too high it can cause audio feedback (squeal) when transmitting. Headphone sidetone adjustment to accommodate the use of the different type headsets is accomplished by adjusting potentiometers in the NAV/COM radios.

AUDIO SELECTOR SWITCHES

The audio selector switches, labeled NAV/COM 1, 2 and 3 and ADF 1 and 2, allow the pilot to initially pre-tune all NAV/COM and ADF receivers, and then individually select and listen to any receiver or combination of receivers. To listen to a specific receiver, first check that the AUTO selector switch is in the OFF (center) position, then place the audio selector switch corresponding to that receiver in either the SPEAKER (up) or PHONE (down) position. To turn off the audio of the selected receiver, place that switch in the OFF (center) position. If desired, the audio selector switches can be positioned to permit the pilot to listen to one receiver on a headset while the passengers listen to another receiver on the airplane speaker.

The ADF 1 and 2 switches may be used anytime ADF audio is desired. If the pilot wants only ADF audio, for station identification or other reasons, the AUTO selector switch (if in use) and all other audio selector switches should be in the OFF position. If simultaneous ADF and NAV/COM audio is acceptable to the pilot, no change in the existing switch positions is required. Place the ADF 1 or 2 switch in either the SPEAKER or PHONE position and adjust radio volume as desired.

NOTE

If the NAV/COM audio selector switch corresponding to the selected transmitter is in the PHONE position with the AUTO selector switch in the SPEAKER position, all audio selector switches placed in the PHONE position will automatically be connected to both the airplane speaker and any headsets in use.

ł

ń

í

MICROPHONE-HEADSET INSTALLATIONS

Three types of microphone-headset installations are offered. The standard system provided with avionics equipment includes a hand-held microphone and separate headset. The keying switch for this microphone is on the microphone. Two optional microphone-headset installations are also available; these feature a single-unit microphone-headset combination which permits the pilot to conduct radio communications without interrupting other control operations to handle a hand-held microphone. One microphone-headset combination is offered without a padded headset and the other version has a padded headset. The microphone-headset combinations utilize a remote keying switch located on the left grip of the pilot's control wheel. The microphone and headset jacks are located on the left side of the instrument panel. Audio to all three headsets is controlled by the individual audio selector switches and adjusted for volume level by using the selected receiver volume controls.

NOTE

When transmitting, the pilot should key the microphone, place the microphone as close as possible to the lips and speak directly into it.

STATIC DISCHARGERS

If frequent IFR flights are planned, installation of wick-type static dischargers is recommended to improve radio communications during flight through dust or various forms of precipitation (rain, snow or ice crystals). Under these conditions, the build-up and discharge of static electricity from the trailing edges of the wings, rudder, elevator, propeller tips, and radio antennas can result in loss of usable radio signals on all communications and navigation radio equipment. Usually the ADF is first to be affected and VHF communication equipment is the last to be affected.

Installation of static dischargers reduces interference from precipitation static, but it is possible to encounter severe precipitation static conditions which might cause the loss of radio signals, even with static dischargers installed. Whenever possible, avoid known severe precipitation areas to prevent loss of dependable radio signals. If avoidance is impractical, minimize airspeed and anticipate temporary loss of radio signals while in these areas. Ĺ

ĺ

į.

Í

SECTION 8 HANDLING, SERVICE & MAINTENANCE

SECTION 8 AIRPLANE HANDLING, Service & Maintenance

TABLE OF CONTENTS

Page

Introduction	. 8-3
Identification Plate	
Owner Follow-Up System	
Publications	. 8-3
Airplane File	. 8-4
Airplane Inspection Periods	. 8-5
FAA Required Inspections	
Cessna Progressive Care	
Cessna Customer Care Program	. 8-6
Pilot Conducted Preventive Maintenance	
Alterations or Repairs	
Ground Handling	
Towing	
Parking	
Tie-Down	
Jacking	
Leveling	
Flyable Storage	
Servicing	8-10
	8-10
Fuel	8-12
Landing Gear	8-12
Cleaning and Care	8-12
Windshield-Windows	8-12
	8-13
Propeller Care	8-13
Landing Gear Care	8-14
	8-14
Interior Care	8-14

INTRODUCTION

This section contains factory-recommended procedures for proper ground handling and routine care and servicing of your Cessna. It also identifies certain inspection and maintenance requirements which must be followed if your airplane is to retain that new-plane performance and dependability. It is wise to follow a planned schedule of lubrication and preventive maintenance based on climatic and flying conditions encountered in your locality.

Keep in touch with your Cessna Dealer and take advantage of his knowledge and experience. He knows your airplane and how to maintain it. He will remind you when lubrications and oil changes are necessary, and about other seasonal and periodic services.

IDENTIFICATION PLATE

All correspondence regarding your airplane should include the SERIAL NUMBER. The Serial Number, Model Number, Production Certificate Number (PC) and Type Certificate Number (TC) can be found on the Identification Plate, located on the left forward doorpost. Located adjacent to the Identification Plate is a Finish and Trim Plate which contains a code describing the interior color scheme and exterior paint combination of the airplane. The code may be used in conjunction with an applicable Parts Catalog if finish and trim information is needed.

OWNER FOLLOW-UP SYSTEM

Your Cessna Dealer has an Owner Follow-Up System to notify you when he receives information that applies to your Cessna. In addition, if you wish, you may choose to receive similar notification, in the form of Service Letters, directly from the Cessna Customer Services Department. A subscription form is supplied in your Customer Care Program book for your use, should you choose to request this service. Your Cessna Dealer will be glad to supply you with details concerning these follow-up programs, and stands ready, through his Service Department, to supply you with fast, efficient, low-cost service.

PUBLICATIONS

Various publications and flight operation aids are furnished in the

SECTION 8 HANDLING, SERVICE & MAINTENANCE CESSNA MODEL R182

airplane when delivered from the factory. These items are listed below.

- CUSTOMER CARE PROGRAM BOOK
- PILOT'S OPERATING HANDBOOK AND FAA APPROVED AIRPLANE FLIGHT MANUAL FOR YOUR AIRPLANE
 - AVIONICS AND AUTOPILOT
- PILOT'S CHECKLISTS
- POWER COMPUTER
- SALES AND SERVICE DEALER DIRECTORY

The following additional publications, plus many other supplies that are applicable to your airplane, are available from your Cessna Dealer.

- INFORMATION MANUAL (Contains Pilot's Operating Handbook Information)
- SERVICE MANUALS AND PARTS CATALOGS FOR YOUR AIRPLANE ENGINE AND ACCESSORIES AVIONICS AND AUTOPILOT

Your Cessna Dealer has a Customer Care Supplies Catalog covering all available items, many of which he keeps on hand. He will be happy to place an order for any item which is not in stock.

A Pilot's Operating Handbook and FAA Approved Airplane Flight Manual which is lost or destroyed may be replaced by contacting your Cessna Dealer or writing directly to the Customer Services Department, Cessna Aircraft Company, Wichita, Kansas. An affidavit containing the owner's name, airplane serial number and registration number must be included in replacement requests since the Pilot's Operating Handbook and FAA Approved Airplane Flight Manual is identified for specific airplanes only.

AIRPLANE FILE

There are miscellaneous data, information and licenses that are a part of the airplane file. The following is a checklist for that file. In addition, a periodic check should be made of the latest Federal Aviation Regulations to ensure that all data requirements are met. CESSNA MODEL R182

- A. To be displayed in the airplane at all times:
 - 1. Aircraft Airworthiness Certificate (FAA Form 8100-2).
 - 2. Aircraft Registration Certificate (FAA Form 8050-3).
 - 3. Aircraft Radio Station License, if transmitter installed (FCC Form 556).
- B. To be carried in the airplane at all times:
 - 1. Pilot's Operating Handbook and FAA Approved Airplane Flight Manual.
 - 2. Weight and Balance, and associated papers (latest copy of the Repair and Alteration Form, FAA Form 337, if applicable).
 - 3. Equipment List.
- C. To be made available upon request:
 - 1. Airplane Log Book.
 - 2. Engine Log Book.

Most of the items listed are required by the United States Federal Aviation Regulations. Since the Regulations of other nations may require other documents and data, owners of airplanes not registered in the United States should check with their own aviation officials to determine their individual requirements.

Cessna recommends that these items, plus the Pilot's Checklists, Power Computer, Customer Care Program book and Customer Care Card, be carried in the airplane at all times.

AIRPLANE INSPECTION PERIODS

FAA REQUIRED INSPECTIONS

As required by Federal Aviation Regulations, all civil aircraft of U.S. registry must undergo a complete inspection (annual) each twelve calendar months. In addition to the required ANNUAL inspection, aircraft operated commercially (for hire) must have a complete inspection every 100 hours of operation.

The FAA may require other inspections by the issuance of airworthiness directives applicable to the airplane, engine, propeller and components. It is the responsibility of the owner/operator to ensure compliance with all applicable airworthiness directives and, when the inspections are repetitive, to take appropriate steps to prevent inadvertent noncompliance.

SECTION 8 HANDLING, SERVICE & MAINTENANCE

In lieu of the 100 HOUR and ANNUAL inspection requirements, an airplane may be inspected in accordance with a progressive inspection schedule, which allows the work load to be divided into smaller operations that can be accomplished in shorter time periods.

The CESSNA PROGRESSIVE CARE PROGRAM has been developed to provide a modern progressive inspection schedule that satisifies the complete airplane inspection requirements of both the 100 HOUR and ANNUAL inspections as applicable to Cessna airplanes. The program assists the owner in his responsibility to comply with all FAA inspection requirements, while ensuring timely replacement of life-limited parts and adherence to factory-recommended inspection intervals and maintenance procedures.

CESSNA PROGRESSIVE CARE

The Cessna Progressive Care Program has been designed to help you realize maximum utilization of your airplane at a minimum cost and downtime. Under this program, your airplane is inspected and maintained in four operations at 50-hour intervals during a 200-hour period. The operations are recycled each 200 hours and are recorded in a specially provided Aircraft Inspection Log as each operation is conducted.

The Cessna Aircraft Company recommends Progressive Care for airplanes that are being flown 200 hours or more per year, and the 100-hour inspection for all other airplanes. The procedures for the Progressive Care Program and the 100-hour inspection have been carefully worked out by the factory and are followed by the Cessna Dealer Organization. The complete familiarity of Cessna Dealers with Cessna equipment and factory-approved procedures provides the highest level of service possible at lower cost to Cessna owners,

Regardless of the inspection method selected by the owner, he should keep in mind that FAR Part 43 and FAR Part 91 establishes the requirement that properly certified agencies or personnel accomplish all required FAA inspections and most of the manufacturer recommended inspections.

CESSNA CUSTOMER CARE PROGRAM

Specific benefits and provisions of the CESSNA WARRANTY plus other important benefits for you are contained in your CUSTOMER CARE PROGRAM book supplied with your airplane. You will want to thoroughly review your Customer Care Program book and keep it in your airplane at all times.

Coupons attached to the Program book entitle you to an initial inspection and either a Progressive Care Operation No.1 or the first 100Ć

hour inspection within the first 6 months of ownership at no charge to you. If you take delivery from your Dealer, the initial inspection will have been performed before delivery of the airplane to you. If you pick up your airplane at the factory, plan to take it to your Dealer reasonably soon after you take delivery, so the initial inspection may be performed allowing the Dealer to make any minor adjustments which may be necessary.

You will also want to return to your Dealer either at 50 hours for your first Progressive Care Operation, or at 100 hours for your first 100-hour inspection depending on which program you choose to establish for your airplane. While these important inspections will be performed for you by any Cessna Dealer, in most cases you will prefer to have the Dealer from whom you purchased the airplane accomplish this work.

PILOT CONDUCTED PREVENTIVE MAINTENANCE

A certified pilot who owns or operates an airplane not used as an air carrier is authorized by FAR Part 43 to perform limited maintenance on his airplane. Refer to FAR Part 43 for a list of the specific maintenance operations which are allowed.

NOTE

Pilots operating airplanes of other than U.S. registry should refer to the regulations of the country of certification for information on preventive maintenance that may be performed by pilots.

A Service Manual should be obtained prior to performing any preventive maintenance to ensure that proper procedures are followed. Your Cessna Dealer should be contacted for further information or for required maintenance which must be accomplished by appropriately licensed personnel.

ALTERATIONS OR REPAIRS

It is essential that the FAA be contacted **prior to** any alterations on the airplane to ensure that airworthiness of the airplane is not violated. Alterations or repairs to the airplane must be accomplished by licensed personnel.

ć

GROUND HANDLING

TOWING

The airplane is most easily and safely maneuvered by hand with the tow-bar attached to the nose wheel. When towing with a vehicle, do not exceed the nose gear turning angle of 30° either side of center, or damage to the gear will result. If the airplane is towed or pushed over a rough surface during hangaring, watch that the normal cushioning action of the nose strut does not cause excessive vertical movement of the tail and the resulting contact with low hangar doors or structure. A flat nose tire or deflated strut will also increase tail height.

PARKING

When parking the airplane, head into the wind and set the parking brakes. Do not set the parking brakes during cold weather when accumulated moisture may freeze the brakes, or when the brakes are overheated. Close the cowl flaps, install the control wheel lock and chock the wheels. In severe weather and high wind conditions, tie the airplane down as outlined in the following paragraph.

TIE-DOWN

Proper tie-down procedure is the best precaution against damage to the parked airplane by gusty or strong winds. To tie-down the airplane securely, proceed as follows:

- 1. Set the parking brake and install the control wheel lock.
- 2. Install a surface control lock over the fin and rudder.
- 3. Tie sufficiently strong ropes or chains (700 pounds tensile strength) to the wing and tail tie-down fittings and secure each rope to a ramp tie-down.
- 4. Tie a rope (no chains or cables) to the nose gear torque link and secure to a ramp tie-down.
- 5. Install a pitot tube cover.

JACKING

When a requirement exists to jack one or both main gear, the entire airplane should be jacked by using the wing jack points. Refer to the Service Manual for specific procedures and equipment required.

If nose gear maintenance is required, the nose wheel may be raised off the ground by pressing down on a tailcone bulkhead, just forward of the horizontal stabilizer, and allowing the tail to rest on the tail tie-down ring.

NOTE

Do not apply pressure on the elevator or outboard stabilizer surfaces. When pushing on the tailcone, always apply pressure at the bulkhead to avoid buckling the skin.

To assist in raising and holding the nose wheel off the ground, weight down the tail by placing sand-bags, or suitable weights, on each side of the horizontal stablizer, next to the fuselage. If ground anchors are available, the tail should be securely tied down.

NOTE

Ensure that the nose will be held off the ground under all conditions by means of suitable stands or supports under weight supporting bulkheads near the nose of the airplane.

LEVELING

l

ĺ

Longitudinal leveling of the airplane is accomplished by placing a level on the leveling screws located on the left side of the tailcone. Deflate the nose tire and/or lower or raise the nose strut to properly center the bubble in the level. Corresponding points on both upper door sills may be used to level the airplane laterally.

FLYABLE STORAGE

Airplanes placed in non-operational storage for a maximum of 30 days or those which receive only intermittent operational use for the first 25 hours are considered in flyable storage status. Every seventh day during these periods, the propeller should be rotated by hand through five revolutions. This action "limbers" the oil and prevents any accumulation of corrosion on engine cylinder walls.

WARNING

For maximum safety, check that the ignition switch is OFF, the throttle is closed, the mixture control is in the idle cut-off position, and the airplane is secured before rotating the propeller by hand. Do not stand within the arc of the propeller blades while turning the propeller.

After 30 days, the airplane should be flown for 30 minutes or a ground runup should be made just long enough to produce an oil temperature within the lower green arc range. Excessive ground runup should be avoided.

SECTION 8 HANDLING, SERVICE & MAINTENANCE

Engine runup also helps to eliminate excessive accumulations of water in the fuel system and other air spaces in the engine. Keep fuel tanks full to minimize condensation in the tanks. Keep the battery fully charged to prevent the electrolyte from freezing in cold weather. If the airplane is to be stored temporarily, or indefinitely, refer to the Service Manual for proper storage procedures.

SERVICING

In addition to the PREFLIGHT INSPECTION covered in Section 4, COMPLETE servicing, inspection, and test requirements for your airplane are detailed in the Service Manual. The Service Manual outlines all items which require attention at 50, 100, and 200 hour intervals plus those items which require servicing, inspection, and/or testing at special intervals.

Since Cessna Dealers conduct all service, inspection, and test procedures in accordance with applicable Service Manuals, it is recommended that you contact your Cessna Dealer concerning these requirements and begin scheduling your airplane for service at the roommended intervals.

Cessna Progressive Care ensures that these requirements are accomplished at the required intervals to comply with the 100-hour or ANNUAL inspection as previously covered.

Depending on various flight operations, your local Government Aviation Agency may require additional service, inspections, or tests. For these regulatory requirements, owners should check with local aviation officials where the airplane is being operated.

For quick and ready reference, quantities, materials, and specifications for frequently used service items are as follows:

ENGINE OIL

GRADE AND VISCOSITY FOR TEMPERATURE RANGE --

The airplane was delivered from the factory with a corrosion preventive aircraft engine oil. This oil should be drained after the first 25 hours of operation, and the following oils used as specified for the average ambient air temperature in the operating area.

MIL-L-6082 Aviation Grade Straight Mineral Oil: Use to replenish supply during the first 25 hours and at the first 25-hour oil change. Continue to use until a total of 50 hours has accumulated or oil consumption has stabilized.

SAE 50 above 16°C (60°F). SAE 40 between -1°C (30°F) and 32°C (90°F). SAE 30 between -18°C (0°F) and 21°C (70°F). ť

SAE 20 below -12°C (10°F).

MIL-L-22851 Ashless Dispersant Oil: This oil must be used after the first 50 hours or oil consumption has stabilized.

- SAE 40 or SAE 50 above 16°C (60°F).
- SAE 40 between -1°C (30°F) and 32°C (90°F).
- SAE 30 or SAE 40 between -18°C (0°F) and 21°C (70°F).
- SAE 30 below -12°C (10°F).

CAPACITY OF ENGINE SUMP -- 8 Quarts.

Do not operate on less than 5 quarts. To minimize loss of oil through breather, fill to 7 quart level for normal flights of less than 3 hours. For extended flight, fill to 8 quarts. These quantities refer to oil dipstick level readings. During oil and oil filter changes, one additional quart is required when the filter is changed.

OIL AND OIL FILTER CHANGE ---

After the first 25 hours of operation, drain engine oil sump and change the filter. Refill sump with straight mineral oil and use until a total of 50 hours has accumulated or oil consumption has stabilized; then change to dispersant oil. Drain the engine oil sump and change the filter each 50 hours thereafter. The oil change interval may be extended to 100-hour intervals, providing the oil filter is changed at 50-hour intervals. Change engine oil at least every 6 months even though less than the recommended hours have accumulated. Reduce intervals for prolonged operation in dusty areas, cold climates, or when short flights and long idle periods result in sludging conditions.

NOTE

During the first 25-hour oil and filter change, a general inspection of the overall engine compartment is required. Items which are not normally checked during a preflight inspection should be given special attention. Hoses, metal lines and fittings should be inspected for signs of oil and fuel leaks, and checked for abrasions, chafing, security, proper routing and support, and evidence of deterioration. Inspect the intake and exhaust systems for cracks, evidence of leakage, and security of attachment. Engine controls and linkages should be checked for freedom of movement through their full range, security of attachment and evidence of wear. Inspect wiring for security, chafing, burning, defective insulation, loose or broken terminals, heat deterioration, and corroded terminals. Check the alternator belt in accordance with Service Manual instructions, and retighten if necessary. A periodic check of these items during subsequent servicing operations is recommended.

Į

FUEL

APPROVED FUEL GRADES (AND COLORS) --100LL Grade Aviation Fuel (Blue).
100 (Formerly 100/130) Grade Aviation Fuel (Green).
CAPACITY EACH TANK -- 46.0 Gallons.
REDUCED CAPACITY EACH TANK (WHEN FILLED TO BOTTOM OF FUEL FILLER NECK) -- 34.5 Gallons.

NOTE

To ensure maximum fuel capacity when refueling, and minimize cross-feeding when parked on a sloping surface, place the fuel selector valve handle in either LEFT or RIGHT position.

LANDING GEAR

NOSE WHEEL TIRE PRESSURE -- 50 PSI on 5.00-5, 6-Ply Rated Tire. MAIN WHEEL TIRE PRESSURE -- 68 PSI on 15 x 6.00-6, 6-Ply Rated Tires. NOSE GEAR SHOCK STRUT --

Keep filled with MIL-H-5606 hydraulic fluid and inflated with air to 55 PSI with no load on strut.

HYDRAULIC FLUID RESERVOIR -- Check every 25 hours and service with MIL-H-5606 hydraulic fluid.

CLEANING AND CARE

WINDSHIELD-WINDOWS

The plastic windshield and windows should be cleaned with an aircraft windshield cleaner. Apply the cleaner sparingly with soft cloths, and rub with moderate pressure until all dirt, oil scum and bug stains are removed. Allow the cleaner to dry, then wipe it off with soft flannel cloths.

If a windshield cleaner is not available, the plastic can be cleaned with soft cloths moistened with Stoddard solvent to remove oil and grease.

NOTE

Never use gasoline, benzine, alcohol, acetone, fire extinguisher or anti-ice fluid, lacquer thinner or glass cleaner to clean the plastic. These materials will attack the plastic and may cause it to craze.

Follow by carefully washing with a mild detergent and plenty of water. Rinse thoroughly, then dry with a clean moist chamois. Do not rub the plastic with a dry cloth since this builds up an electrostatic charge which attracts dust. Waxing with a good commercial wax will finish the cleaning job. A thin, even coat of wax, polished out by hand with clean soft flannel cloths, will fill in minor scratches and help prevent further scratching.

Do not use a canvas cover on the windshield unless freezing rain or sleet is anticipated since the cover may scratch the plastic surface.

PAINTED SURFACES

The painted exterior surfaces of your new Cessna have a durable, long lasting finish and, under normal conditions, require no polishing or buffing. Approximately 10 days are required for the paint to cure completely; in most cases, the curing period will have been completed prior to delivery of the airplane. In the event that polishing or buffing is required within the curing period, it is recommended that the work be done by someone experienced in handling uncured paint. Any Cessna Dealer can accomplish this work.

Generally, the painted surfaces can be kept bright by washing with water and mild soap, followed by a rinse with water and drying with cloths or a chamois. Harsh or abrasive soaps or detergents which cause corrosion or scratches should never be used. Remove stubborn oil and grease with a cloth moistened with Stoddard solvent.

Waxing is unnecessary to keep the painted surfaces bright. However, if desired, the airplane may be waxed with a good automotive wax. A heavier coating of wax on the leading edges of the wings and tail and on the engine nose cap and propeller spinner will help reduce the abrasion encountered in these areas.

When the airplane is parked outside in cold climates and it is necessary to remove ice before flight, care should be taken to protect the painted surfaces during ice removal with chemical liquids. Isopropyl alcohol will satisfactorily remove ice accumulations without damaging the paint. While applying the de-icing solution, keep it away from the windshield and cabin windows since the alcohol will attack the plastic and may cause it to craze.

PROPELLER CARE

Preflight inspection of propeller blades for nicks, and wiping them occasionally with an oily cloth to clean off grass and bug stains will assure long, trouble-free service. Small nicks on the propeller, particularly near the tips and on the leading edges, should be dressed out as soon as possible since these nicks produce stress concentrations, and if ignored, may result in cracks. Never use an alkaline cleaner on the blades; remove grease and dirt with Stoddard solvent.

LANDING GEAR CARE

Cessna Dealer's mechanics have been trained in the proper adjustment¹ and rigging procedures on the airplane hydraulic system. To assure trouble-free gear operation, have your Cessna Dealer check the gear regularly and make any necessary adjustments. Only properly trained mechanics should attempt to repair or adjust the landing gear.

ENGINE CARE

The engine may be cleaned with Stoddard solvent, or equivalent, then dried thoroughly.

CAUTION

Particular care should be given to electrical equipment before cleaning. Cleaning fluids should not be allowed to enter magnetos, starter, alternator and the like. Protect these components before saturating the engine with solvents. All other openings should also be covered before cleaning the engine assembly. Caustic cleaning solutions should be used cautiously and should always be properly neutralized after their use.

INTERIOR CARE

To remove dust and loose dirt from the upholstery and carpet, clean the interior regularly with a vacuum cleaner.

Blot up any spilled liquid promptly with cleansing tissue or rags. Don't pat the spot; press the blotting material firmly and hold it for several seconds. Continue blotting until no more liquid is taken up. Scrape off sticky materials with a dull knife, then spot-clean the area.

Oily spots may be cleaned with household spot removers, used sparingly. Before using any solvent, read the instructions on the container and test it on an obscure place on the fabric to be cleaned. Never saturate the fabric with a volatile solvent; it may damage the padding and backing materials.

Soiled upholstery and carpet may be cleaned with foam-type detergent, used according to the manufacturer's instructions. To minimize wetting the fabric, keep the foam as dry as possible and remove it with a vacuum cleaner.

If your airplane is equipped with leather seating, cleaning of the seats is accomplished using a soft cloth or sponge dipped in mild soap suds. The

CESSNA MODEL R182

ĺ

ţ

ť

ĺ

SECTION 8 HANDLING, SERVICE & MAINTENANCE

scap suds, used sparingly, will remove traces of dirt and grease. The scap should be removed with a clean damp cloth.

The plastic trim, headliner, instrument panel and control knobs need only be wiped off with a damp cloth. Oil and grease on the control wheel and control knobs can be removed with a cloth moistened with Stoddard solvent. Volatile solvents, such as mentioned in paragraphs on care of the windshield, must never be used since they soften and craze the plastic.

8-15/(8-16 blank)

í

í

SECTION 9 SUPPLEMENTS (Optional Systems Description & Operating Procedures)

TABLE OF CONTENTS

Introduction	
Supplements (General):	
Carburetor Air Temperature Gage	ges)
Digital Clock	
Electric Elevator Trim System	zes)
Ground Service Plug Receptacle	ges)
Oxygen System	
Strobe Light System	
Winterization Kit	zes)
Supplements (Avionics):	
DME (Type 190)	zes)
Emergency Locator Transmitter (ELT)	zes)
Foster Area Navigation System (Type 511) (8 pag	zes)
HF Transceiver (Type PT10-A)	
SSB HF Transceiver (Type ASB-125)	res)
Unslaved Horizontal Situation Indicator (Type IG-832C) (6 pag	
200A Navomatic Autopilot (Type AF-295B)	
300 ADF (Type R-546E)	
300 Nav/Com (Type RT-385A)	
300 Nav/Com (Type RT-385A) With 400 Area	
Navigation System (Type RN-478A)	zes)
300 Transponder (Type RT-359A) And Optional	
Altitude Encoder (Blind)	(es)
300 Transponder (Type RT-359A) And Optional	· ·
Encoding Altimeter (Type EA-401A)	tes)
300A Navomatic Autopilot (Type AF-395A) (6 pag	
400 ADF (Type R-446A)	
400 Area Navigation System (Type RN-478A) (6 pag	
400 DME (Type R-476A)	
400 Glide Slope (Type R-443B)	
400 Marker Beacon (Type R-402A)	

1 October 1978

CESSNA. MODEL R182

TABLE OF CONTENTS (Continued)

400 Nav/Com (Type RT-485A)	. (10 pages)
400 Nav/Com (Type RT-485A) With 400 Area	i - i
Navigation System (Type RN-478A)	. (10 pages)
400 Transponder (Type RT-459A) And Optional	
Altitude Encoder (Blind)	. (6 pages)
400 Transponder (Type RT-459A) And Optional	/
Encoding Altimeter (Type EA-401A)	. (6 pages)
• • • • •	

î

ł

INTRODUCTION

This section consists of a series of supplements, each covering a single optional system which may be installed in the airplane. Each supplement contains a brief description, and when applicable, operating limitations, emergency and normal procedures, and performance. As listed in the Table of Contents, the supplements are classified under the headings of general and avionics, and are arranged alphabetically and numerically to make it easier to locate a particular supplement. Other routinely installed items of optional equipment, whose function and operational procedures do not require detailed instructions, are discussed in Section 7.

Limitations contained in the following supplements are FAA approved. Observance of these operating limitations is required by Federal Aviation Regulations.

1 October 1978

9-3/(9-4 blank)

FAA APPROVED Airplane Flight Manual Supplement

FOR

MODELS	SERIALS	MODELS	SERIALS
172	17271035 thru 17276673	F182	F18200095 thru F18200169
F172	F17201750 thru F17202254	R182	R18200584 thru R18202041
R172	R1722930 thru R1723454	FR182	FR18200021 thru FR18200070
FR172	FR17200631 thru FR17200675	185	18503684 thru 18504448
172RG	172RG0001 thru 172RG1191	U206/TU20	6U20604650 thru U20607020
180	18053001 thru 18053203	207/T207	20700483 thru 20700788
182/T182	18266591 thru 18268615	210/7210	21062955 thru 21065009
	•		

Serial No. <u>R / 820 //33</u> Registration No. N 756 RA

This supplement must be attached to the Pilot's Operating Handbook/FAA Approved Airplane Flight Manual when the Secondary Seat Stop modification is installed in accordance with Cessna Single-Engine Service Bulletin SEB89-2.

The information contained herein supplements or supersedes the information of the basic Pilot's Operating Handbook/FAA Approved Airplane Flight Manual and Checklists. For limitations, procedures, and performance information not contained in this supplement, consult the basic Pilot's Operating Handbook/FAA Approved Airplane Flight Manual.

FAA APPROVED Cessna Aircraft Co., Aircraft Div. Delegation Option Manufacturer, CE-1 Executive Engineer

MARCH

Date

COPYRIGHT [©] 1989 CESSNA AIRCRAFT COMPANY WICHITA, KANSAS, USA

ĺ

ĺ

Member of GAMA

21, 1989

D1325-13-RPC-3500-11/90

Original Issue - 24 March 1989

SECTION 1 GENERAL

A secondary seat stop installation is provided for the pilot's seat to prevent the seat from inadvertently sliding aft beyond the adjusted flight position if it is not securely locked by the standard seat lock.

The secondary seat stop installation (see Figure 1) consists of a seat stop lever assembly mounted to the inboard seat rail and floor structure \langle and a stop plate attached to the inboard side of the pilot's seat pedestal or frame. The stop lever rotates and is spring-loaded to maintain contact with the seat rail, and thereby serves as a secondary seat stop to prevent rearward movement of the seat beyond the stop. Either the aft seat roller housing or the tabs which protrude from the seat stop plate will contact the stop lever, preventing additional rearward movement. Depending on the seat position selected by the seat occupant, the secondary stop may be slightly aft of the entire seat or it may be in a position forward of the aft roller or one of the tabs on the seat stop plate when the seat is adjusted to the desired flight position. Regardless of where the seat is positioned, rearward seat travel will be restricted in the event the seat (occupant fails to lock the seat in position by normal means. When rearward seat movement is desired for additional leg room or when exiting the airplane, the stop lever can be manually rotated to the UNLATCH position while the normal seat lock release is simultaneously operated. This will allow clearance between the stop lever and the seat (rail for passage of the seat roller housing or seat stop plate tabs as the seat is moved aft.

SECTION 2 LIMITATIONS

There is no change to the airplane limitations when a secondary seat stop is installed.

SECTION 3 EMERGENCY PROCEDURES

The pilot must advise all passengers of the operation of the pilot's seat lock release and secondary seat stop to assist those wishing to exit the airplane through the door on the pilot's side or in case an emergency

Original Issue

AIRPLANE FLIGHT MANUAL SUPPLEMENT

NOTE

- The installation shown depicts a seat stop lever and seat stop plate installed on the inboard seat rail and inboard side of a pilot's seat.
- On airplanes with a floorboard tunnel, the retainer shape is modified to clear all tunnel structure.

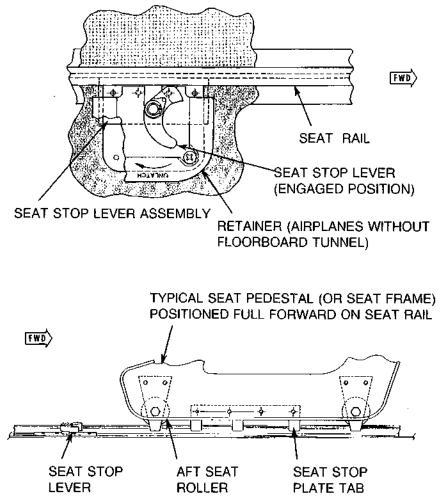


Figure 1. Secondary Seat Stop Installation

ł

ground egress is required after a forced landing or ditching.

The pilot seat cannot be moved aft appreciably without releasing both the normal locking device and the secondary seat stop simultaneously.

SECTION 4 NORMAL PROCEDURES

During the Preflight Inspection, test the pilot's seat for proper operation by releasing the seat locking pins, moving the seat full forward, and then pushing the seat aft. If operating normally, rearward movement of the seat will be stopped when the aft roller housing on the seat (contacts the secondary seat stop. Then momentarily unlatch the secondary seat stop and move the seat farther aft to test that each seat stop plate tab contacts the secondary seat stop to restrict seat movement. When the seat is again moved full forward, the secondary seat stop should momentarily rotate to an unlatched position to allow the (passage of each stop plate tab and the aft seat roller housing.

The pilot should demonstrate the operation of all seats to the passengers before flight.

SECTION 5 PERFORMANCE

There is no change to the airplane performance when the pilot's secondary seat stop is installed.

CARBURETOR AIR TEMPERATURE GAGE MODEL R182

SUPPLEMENT

CARBURETOR AIR TEMPERATURE GAGE

SECTION 1 GENERAL

The carburetor air temperature gage provides a means of detecting carburetor icing conditions. The gage is located on the left side of the instrument panel below the gyros. It is marked in 5° increments from -30° C to $+30^{\circ}$ C, and has a yellow arc between -15° C and $+5^{\circ}$ C which indicates the temperature range most conducive to carburetor icing.

SECTION 2 LIMITATIONS

There is no change to the airplane limitations when the carburetor air temperature gage is installed.

SECTION 3

EMERGENCY PROCEDURES

There is no change to the airplane emergency procedures when the carburetor air temperature gage is installed.

SECTION 4 NORMAL PROCEDURES

There is no change to the airplane normal procedures when the carburetor air temperature gage is installed. It is good practice to monitor the gage periodically and keep the needle out of the yellow arc during possible carburetor icing conditions. Refer to Section 4 of the basic

1 October 1978

ł

í

ł

CARBURETOR AIR TEMPERATURE GAGE MODEL R182

handbook for procedures used when operating with carburetor heat applied.

SECTION 5 PERFORMANCE

There is no change to the airplane performance when the carburetor (air temperature gage is installed. However, if it is necessary to operate with carburetor heat applied, a small performance loss may be expected at any given power setting due to the warmer induction air temperature.

ſ

i

SUPPLEMENT

DIGITAL CLOCK

SECTION 1 GENERAL

The Astro Tech LC-2 Quartz Chronometer (see figure 1) is a precision, solid state time keeping device which will display to the pilot the time-ofday, the calendar date, and the elapsed time interval between a series of selected events, such as in-flight check points or legs of a cross-country flight, etc. These three modes of operation function independently and can be alternately selected for viewing on the four digit liquid crystal display (LCD) on the front face of the instrument. Three push button type switches directly below the display control all time keeping functions. These control functions are summarized in figures 2 and 3.

The digital display features an internal light (back light) to ensure good visibility under low cabin lighting conditions or at night. The intensity of the back light is controlled by the ENG-RADIO lights rheostat. In addition, the display incorporates a test function (see figure 1) which allows checking that all elements of the display are operating. To activate the test function, press the LH and RH buttons at the same time.

SECTION 2 LIMITATIONS

There is no change to the airplane limitations when the digital clock is installed.

SECTION 3 EMERGENCY PROCEDURES

There is no change to the airplane emergency procedures when the digital clock is installed.

1 October 1978

í

DIGITAL CLOCK MODEL R182

PILOT'S OPERATING HANDBOOK SUPPLEMENT

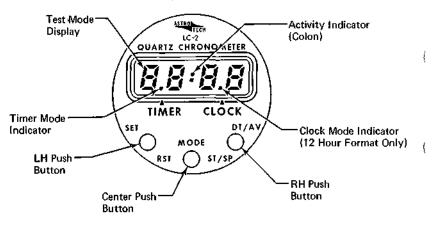


Figure 1. Digital Clock

SECTION 4 NORMAL PROCEDURES

CLOCK AND DATE OPERATION

When operating in the clock mode (see figure 2), the display shows the time of day in hours and minutes while the activity indicator (colon) will blink off for one second each ten seconds to indicate proper functioning. If the RH push button is pressed momentarily, while in the clock mode, the calendar date appears numerically on the display with month of year to the left of the colon and day of the month shown to the right of the colon. The display automatically returns to the clock mode after approximately 1.5 seconds. However, if the RH button is pressed continuously longer than approximately two seconds, the display will return from the date to the clock mode with the activity indicator (colon) blinking altered to show continuously or be blanked completely from the display. Should this occur, simply press the RH button again for two seconds or longer, and correct colon blinking will be restored.

NOTE

The clock mode is set at the factory to operate in the 24hour format. However, 12-hour format operation may be selected by changing the position of an internal slide switch accessible through a small hole on the bottom of the instrument case. Notice that in the 24-hour format, the clock mode indicator does not appear.

ĺ

ť

DIGITAL CLOCK MODEL R182

Seconds

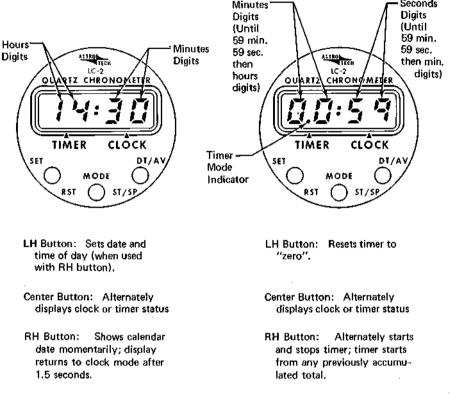


Figure 2. Clock Mode

Figure 3. Timer Mode

SETTING CORRECT DATE AND TIME

The correct date and time are set while in the clock mode using the LH and RH push buttons as follows: press the LH button once to cause the date to appear with the month flashing. Press the RH button to cause the month to advance at one per second (holding button), or one per push until the correct month appears. Push the LH button again to cause the day of month to appear flashing, then advance as before using RH button until correct day of month appears.

Once set correctly, the date advances automatically at midnight each day until February 29 of each leap year, at which time one day must be added manually.

Pressing the LH button two additional times will cause the time to

DIGITAL CLOCK MODEL R182

PILOT'S OPERATING HANDBOOK SUPPLEMENT

appear with the hours digits flashing. Using the RH button as before, advance the hour digits to the correct hour as referenced to a known time standard. Another push of the LH button will now cause the minutes digits to flash. Advance the minutes digits to the next whole minute to be reached by the time standard and "hold" the display by pressing the LH button once more. At the exact instant the time standard reaches the value "held" by the display, press the RH button to restart normal clock timing, which will now be synchronized to the time standard.

In some instances, however, it may not be necessary to advance the (minutes digits of the clock; for example when changing time zones. In such a case, do not advance the minutes digits while they are flashing. Instead, press the LH button again, and the clock returns to the normal time keeping mode without altering the minutes timing.

TIMER OPERATION

The completely independent 24-hour elapsed timer (see figure 3) is (operated as follows: press the center (MODE) push button until the timer mode indicator appears. Reset the display to "zero" by pressing the LH button. Begin timing an event by pressing the RH button. The timer will begin counting in minutes and seconds and the colon (activity indicator) will blink off for 1/10 second each second. When 59 minutes 59 seconds have accumulated, the timer changes to count in hours and minutes up to a maximum of 23 hours, 59 minutes. During the count in hours and minutes, the colon blinks off for one second each ten seconds. To stop timing the event, press the RH button once again and the time shown by the display is "frozen". Successive pushes of the RH button will alternately restart the count from the "held" total or stop the count at a new total. The hold status of the timer can be recognized by lack of colon activity, either continuously on or continuously off. The timer can be reset to "zero" at anytime using the LH button.

SECTION 5 PERFORMANCE

There is no change to the airplane performance when the digital clock is installed.

ţ

Į

ELECTRIC ELEVATOR TRIM SYSTEM MODEL R182

SUPPLEMENT ELECTRIC ELEVATOR TRIM SYSTEM

SECTION 1 GENERAL

The electric elevator trim system provides a simple method of relieving pitch control pressures without interrupting other control operations to adjust the manual elevator trim wheel. The system is controlled by a slide-type trim switch on the top of the left control wheel grip and a disengage switch located on the upper left side of the control wheel pad. Pushing the trim switch to the forward position, labeled DN, moves the elevator trim tab in the "nose down" direction; conversely, pulling the switch aft to the UP position moves the tab in the "nose up" direction. When the switch is released, it automatically returns to the center off position, and elevator trim tab motion stops. The disengage switch, labeled ELEC TRIM DISENGAGE, disables the system when placed in the DISENGAGE (aft) position.

A servo unit (which includes a motor and chain-driven, solenoidoperated clutch) actuates the trim tab to the selected position. When the clutch is not energized (trim switch off) the electric portion of the trim system freewheels so that manual operation is not affected. The electric trim system can be overridden at any time by manually rotating the elevator trim wheel, thus overriding the servo that drives the trim tab.

SECTION 2 LIMITATIONS

The following limitation applies to the electric elevator trim system:

1. The maximum altitude loss during an electric elevator trim malfunction may be as much as 260 feet.

1 October 1978

ELECTRIC ELEVATOR TRIM SYSTEM MODEL R182

PILOT'S OPERATING HANDBOOK SUPPLEMENT

t

ł

SECTION 3

EMERGENCY PROCEDURES

- 1. Elevator Trim Disengage Switch -- DISENGAGE.
- 2. ELECT TRIM Circuit Breaker -- PULL.
- 3. Manual Trim -- AS REQUIRED.

SECTION 4 NORMAL PROCEDURES

To operate the electric elevator trim system, proceed as follows:

- 1. Master Switch -- ON.
- 2. Elevator Trim Disengage Switch -- ON.
- 3. Trim Switch -- ACTUATE as desired.
- 4. Elevator Trim Position Indicator -- CHECK.

NOTE

To check the operation of the disengage switch, actuate the elevator trim switch with the disengage switch in the DISENGAGE (aft) position. Observe that the manual trim wheel and indicator do not rotate when the elevator trim switch is activated.

SECTION 5 PERFORMANCE

There is no change to the airplane performance when this trim system is installed.

1 October 1978

í

GROUND SERVICE PLUG RECEPTACLE MODEL R182

SUPPLEMENT

GROUND SERVICE PLUG RECEPTACLE

SECTION 1 GENERAL

The ground service plug receptacle permits the use of an external power source for cold weather starting and lengthy maintenance work on the electrical and electronic equipment. The receptacle is located behind a door on the left side of the fuselage near the aft edge of the cowling.

NOTE

If no avionics equipment is to be used or worked on, the avionics power switch should be turned off. If maintenance is required on the avionics equipment, it is advisable to utilize a battery cart external power source to prevent damage to the avionics equipment by transient voltage. Do not crank or start the engine with the avionics power switch turned on.

The battery and external power circuits have been designed to completely eliminate the need to "jumper" across the battery contactor to close it for charging a completely "dead" battery. A special fused circuit in the external power system supplies the needed "jumper" across the contacts so that with a "dead" battery and an external power source applied, turning the master switch ON will close the battery contactor. GROUND SERVICE PLUG RECEPTACLE MODEL R182

PILOT'S OPERATING HANDBOOK SUPPLEMENT

ł

í

L

SECTION 2 LIMITATIONS

The following information must be presented in the form of a placard located on the inside of the ground service plug access door:

> CAUTION 24 VOLTS D.C. This aircraft is equipped with alternator and a negative ground system. OBSERVE PROPER POLARITY Reverse polarity will damage electrical components.

SECTION 3

EMERGENCY PROCEDURES

There is no change to the airplane emergency procedures when the ground service plug receptacle is installed.

SECTION 4 NORMAL PROCEDURES

Just before connecting an external power source (generator type or battery cart), the avionics power switch should be turned off, and the master switch turned on.

WARNING

When turning on the master switch, using an external power source, or pulling the propeller through by hand, treat the propeller as if the ignition switch were on. Do not stand, nor allow anyone else to stand, within the arc of the propeller, since a loose or broken wire, or a component malfunction, could cause the propeller to rotate.

ί

ĺ

ĺ

í

ĺ

The ground service plug receptacle circuit incorporates a polarity reversal protection. Power from the external power source will flow only if the ground service plug is correctly connected to the airplane. If the plug is accidentally connected backwards, no power will flow to the electrical system, thereby preventing any damage to electrical equipment.

SECTION 5 PERFORMANCE

There is no change to the airplane performance when the ground service plug receptacle is installed.

į

I

ĺ

ŕ.

STROBE LIGHT SYSTEM MODEL R182

SUPPLEMENT

STROBE LIGHT SYSTEM

SECTION 1 GENERAL

The high intensity strobe light system enhances anti-collision protection for the airplane. The system consists of two wing tip-mounted strobe lights (with integral power supplies), a rocker switch, labeled STROBE LIGHTS, and a 5-amp push-to-reset circuit breaker. The rocker switch and circuit breaker are located on the left side of the switch and control panel.

SECTION 2

Strobe lights must be turned off when taxiing in the vicinity of other airplanes, or during night flight through clouds, fog or haze.

SECTION 3 EMERGENCY PROCEDURES

There is no change to the airplane emergency procedures when strobe lights are installed.

SECTION 4 NORMAL PROCEDURES

To operate the strobe light system, proceed as follows:

- 1. Master Switch -- ON.
- 2. Strobe Light Switch -- ON.

1 October 1978

STROBE LIGHT SYSTEM MODEL R182

É

ĺ

(

í

í

SECTION 5 PERFORMANCE

The installation of strobe lights will result in a minor reduction in cruise performance.

í

Ĺ

ł

Í

ł

SUPPLEMENT

WINTERIZATION KIT

SECTION 1 GENERAL

The winterization kit consists of two cover plates (with placards) which attach to the air intakes in the cowling nose cap, and a placard to be installed on the instrument panel. This equipment should be installed for operations in temperatures consistently below 20° F (-7°C).

SECTION 2 LIMITATIONS

The following information must be presented in the form of placards when the airplane is equipped with a winterization kit.

1. On each nose cap cover plate:

THIS PLATE NOT TO BE USED WHEN TEMPERATURE EXCEEDS +20° F.

2. On right side of instrument panel:

WINTERIZATION KIT MUST BE REMOVED WHEN OUTSIDE AIR TEMPERATURE IS ABOVE 20°F.

1 October 1978

WINTERIZATION KIT MODEL R182

É

ſ

ł

Ĺ

Ĺ

SECTION 3

EMERGENCY PROCEDURES

There is no change to the airplane emergency procedures when the winterization kit is installed.

SECTION 4 NORMAL PROCEDURES

There is no change to the airplane normal procedures when the winterization kit is installed.

SECTION 5 PERFORMANCE

There is no change to the airplane performance when the winterization $-\ell$ kit is installed.

1 October 1978

ŧ

£

EMERGENCY LOCATOR TRANSMITTER (ELT)

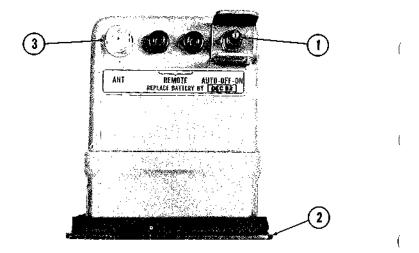
SUPPLEMENT

EMERGENCY LOCATOR TRANSMITTER (ELT)

SECTION 1 GENERAL

The ELT consists of a self-contained dual-frequency radio transmitter and battery power supply, and is activated by an impact of 5g or more as may be experienced in a crash landing. The ELT emits an omni-directional signal on the international distress frequencies of 121.5 and 243.0 MHz. (Some ELT units in export aircraft transmit only on 121.5 MHz.) General aviation and commercial aircraft, the FAA, and CAP monitor 121.5 MHz, and 243.0 MHz is monitored by the military. Following a crash landing, the ELT will provide line-of-sight transmission up to 100 miles at 10,000 feet. The ELT supplied in domestic aircraft transmits on both distress frequencies simultaneously at 75 mw rated power output for 50 continuous hours in the temperature range of -4° F to $+131^{\circ}$ F (-20° C to $+55^{\circ}$ C). The ELT unit in export aircraft transmits on 121.5 MHz at 25 mw rated power output for 50 continuous hours in the temperature range of -4° F to $+131^{\circ}$ F (-20° C to $+55^{\circ}$ C).

The ELT is readily identified as a bright orange unit mounted behind the baggage compartment wall in the tailcone. To gain access to the unit, remove the baggage compartment wall. The ELT is operated by a control panel at the forward facing end of the unit (see figure 1).


SECTION 2 LIMITATIONS

The following information must be presented in the form of a placard located on the baggage compartment wall.

EMERGENCY LOCATOR TRANSMITTER INSTALLED AFT OF THIS PARTITION. MUST BE SERVICED IN ACCORDANCE WITH FAR PART 91.52

1 October 1978

EMERGENCY LOCATOR TRANSMITTER (ELT)

- 1. FUNCTION SELECTOR SWITCH (3-position toggle switch);
 - ON Activates transmitter instantly. Used for test purposes and if "g" switch is inoperative.
 - OFF Deactivates transmitter. Used during shipping, storage and following rescue.
 - AUTO Activates transmitter only when "g" switch receives 5g or more impact.
- 2. COVER Removable for access to battery pack.
- 3. ANTENNA RECEPTACLE Connects to antenna mounted on top of tailcone.

Figure 1. ELT Control Panel

SECTION 3 EMERGENCY PROCEDURES

Immediately after a forced landing where emergency assistance is required, the ELT should be utilized as follows.

1. ENSURE ELT ACTIVATION --Turn a radio transceiver ON and select 121.5 MHz. If the ELT can be heard transmitting, it was (activated by the "g" switch and is functioning properly. If no emergency tone is audible, gain access to the ELT and place the function selector switch in the ON position.

- 2. PRIOR TO SIGHTING RESCUE AIRCRAFT -- Conserve airplane battery. Do not activate radio transceiver.
- 3. AFTER SIGHTING RESCUE AIRCRAFT -- Place ELT function selector switch in the OFF position, preventing radio interference. Attempt contact with rescue aircraft with the radio transceiver set to a frequency of 121.5 MHz. If no contact is established, return the function selector switch to ON immediately.
- 4. FOLLOWING RESCUE -- Place ELT function selector switch in the OFF position, terminating emergency transmissions.

SECTION 4 NORMAL PROCEDURES

As long as the function selector switch remains in the AUTO position, the ELT automatically activates following an impact of 5g or more over a short period of time.

Following a lightning strike, or an exceptionally hard landing, the ELT may activate although no emergency exists. To check your ELT for inadvertent activation, select 121.5 MHz on your radio transceiver and listen for an emergency tone transmission. If the ELT can be heard transmitting, place the function selector switch in the OFF position and the tone should cease. Immediately place the function selector switch in the AUTO position to re-set the ELT for normal operation.

SECTION 5 PERFORMANCE

There is no change to the airplane performance data when this equipment is installed.

1 October 1978

ł

ŧ

3/(4 blank)